Do you want to publish a course? Click here

Quantum information processing with closely-spaced diamond color centers in strain and magnetic fields

76   0   0.0 ( 0 )
 Added by Tongcang Li
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electron and nuclear spins of diamond nitrogen-vacancy (NV) centers are good candidates for quantum information processing as they have long coherence time and can be initialized and read out optically. However, creating a large number of coherently coupled and individually addressable NV centers for quantum computing has been a big challenge. Here we propose methods to use high-density diamond NV centers coupled by spin-spin interaction with an average separation on the order of 10 nm for quantum computing. We propose to use a strain gradient to encode the position information of each NV center in the energy level of its excited electron orbital state, which causes a shift of its optical transition frequency. With such strain encoding, more than 100 closely-packed NV centers below optical diffraction limit can be read out individually by resonant optical excitation. A magnetic gradient will be used to shift the electron spin resonant (ESR) frequencies of NV centers. Therefore, the spin state of each NV center can be individually manipulated and different NV centers can be selectively coupled. A universal set of quantum operations for two-qubit and three-qubit system is introduced by careful design of external drives. Moreover, entangled states with multiple qubits can be created by this protocol, which is a major step towards quantum information processing with solid-state spins.



rate research

Read More

Recent developments in magnetic field sensing with negatively charged nitrogen-vacancy centers (NV) in diamond employ magnetic-field (MF) dependent features in the photoluminescence (PL) and eliminate the need for microwaves (MW). Here, we study two approaches towards improving the magnetometric sensitivity using the ground-state level anti-crossing (GSLAC) feature of the NV center at a background MF of 102.4,mT. Following the first approach, we investigate the feature parameters for precise alignment in a dilute diamond sample; the second approach extends the sensing protocol into absorption via detection of the GSLAC in the diamond transmission of a 1042,nm laser beam. This leads to an increase of GSLAC contrast and results in a magnetometer with a sensitivity of 0.45,nT/$sqrt{text{Hz}}$ and a photon shot-noise limited sensitivity of 12.2 pT/$sqrt{rm{Hz}}$.
We propose an electromechanical scheme where the electronic degrees of freedom of boron vacancy color centers hosted by a hexagonal boron nitride nanoribbon are coupled for quantum information processing. The mutual coupling of color centers is provided via their coupling to the mechanical motion of the ribbon, which in turn stems from the local strain. The coupling strengths are computed by performing ab-initio calculations. The density functional theory (DFT) results for boron vacancy centers on boron nitride monolayers reveal a huge strain susceptibility. In our analysis, we take into account the effect of all flexural modes and show that despite the thermal noise introduced through the vibrations one can achieve steady-state entanglement between two and more number of qubits that survives even at room temperature. Moreover, the entanglement is robust against mis-positioning of the color centers. The effective coupling of color centers is engineered by positioning them in the proper positions. Hence, one is able to tailor stationary graph states. Furthermore, we study the quantum simulation of the Dicke-Ising model and show that the phonon superradiance phase transition occurs even for a finite number of color centers. Given the steady-state nature of the proposed scheme and accessibility of the electronic states through optical fields, our work paves the way for the realization of steady-state quantum information processing with color centers in hexagonal boron nitride membranes.
An efficient atom-photon-interface is a key requirement for the integration of solid-state emitters such as color centers in diamond into quantum technology applications. Just like other solid state emitters, however, their emission into free space is severely limited due to the high refractive index of the bulk host crystal. In this work, we present a planar optical antenna based on two silver mirrors coated on a thin single crystal diamond membrane, forming a planar Fabry-Perot cavity that improves the photon extraction from single tin vacancy (SnV) centers as well as their coupling to an excitation laser. Upon numerical optimization of the structure, we find theoretical enhancements in the collectible photon rate by a factor of 60 as compared to the bulk case. As a proof-of-principle demonstration, we fabricate single crystal diamond membranes with sub-$mu$m thickness and create SnV centers by ion implantation. Employing off-resonant excitation, we show a 6-fold enhancement of the collectible photon rate, yielding up to half a million photons per second from a single SnV center. At the same time, we observe a significant reduction of the required excitation power in accordance with theory, demonstrating the functionality of the cavity as an optical antenna. Due to its planar design, the antenna simultaneously provides similar enhancements for a large number of emitters inside the membrane. Furthermore, the monolithic structure provides high mechanical stability and straightforwardly enables operation under cryogenic conditions as required in most spin-photon interface implementations.
104 - F. Jelezko , J. Wrachtrup 2005
Quantum computing is an attractive and multidisciplinary field, which became a focus for experimental and theoretical research during last decade. Among other systems, like ions in traps or superconducting circuits, solid-states based qubits are considered to be promising candidates for first experimental tests of quantum hardware. Here we report recent progress in quantum information processing with point defect in diamond. Qubits are defined as single spin states (electron or nuclear). This allows exploring long coherence time (up to seconds for nuclear spins at cryogenic temperatures). In addition, the optical transition between ground and excited electronic states allows coupling of spin degrees of freedom to the state of the electromagnetic field. Such coupling gives access to the spin state readout via spin-selective scattering of photon. This also allows using of spin state as robust memory for flying qubits (photons).
Nitrogen vacancy (NV) centers in diamond have distinct promise as solid-state qubits. This is because of their large dipole moment, convenient level structure and very long room-temperature coherence times. In general, a combination of ion irradiation and subsequent annealing is used to create the centers, however for the rigorous demands of quantum computing all processes need to be optimized, and decoherence due to the residual damage caused by the implantation process itself must be mitigated. To that end we have studied photoluminescence (PL) from NV$^-$, NV$^0$ and GR1 centers formed by ion implantation of 2MeV He ions over a wide range of fluences. The sample was annealed at $600^{circ}$C to minimize residual vacancy diffusion, allowing for the concurrent analysis of PL from NV centers and irradiation induced vacancies (GR1). We find non-monotic PL intensities with increasing ion fluence, monotonic increasing PL in NV$^0$/NV$^-$ and GR1/(NV$^0$ + NV$^1$) ratios, and increasing inhomogeneous broadening of the zero-phonon lines with increasing ion fluence. All these results shed important light on the optimal formation conditions for NV qubits. We apply our findings to an off-resonant photonic quantum memory scheme using vibronic sidebands.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا