Do you want to publish a course? Click here

Mapping Perceptions of Humanness in Speech-Based Intelligent Personal Assistant Interaction

142   0   0.0 ( 0 )
 Added by Justin Edwards
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Humanness is core to speech interface design. Yet little is known about how users conceptualise perceptions of humanness and how people define their interaction with speech interfaces through this. To map these perceptions n=21 participants held dialogues with a human and two speech interface based intelligent personal assistants, and then reflected and compared their experiences using the repertory grid technique. Analysis of the constructs show that perceptions of humanness are multidimensional, focusing on eight key themes: partner knowledge set, interpersonal connection, linguistic content, partner performance and capabilities, conversational interaction, partner identity and role, vocal qualities and behavioral affordances. Through these themes, it is clear that users define the capabilities of speech interfaces differently to humans, seeing them as more formal, fact based, impersonal and less authentic. Based on the findings, we discuss how the themes help to scaffold, categorise and target research and design efforts, considering the appropriateness of emulating humanness.



rate research

Read More

Limited linguistic coverage for Intelligent Personal Assistants (IPAs) means that many interact in a non-native language. Yet we know little about how IPAs currently support or hinder these users. Through native (L1) and non-native (L2) English speakers interacting with Google Assistant on a smartphone and smart speaker, we aim to understand this more deeply. Interviews revealed that L2 speakers prioritised utterance planning around perceived linguistic limitations, as opposed to L1 speakers prioritising succinctness because of system limitations. L2 speakers see IPAs as insensitive to linguistic needs resulting in failed interaction. L2 speakers clearly preferred using smartphones, as visual feedback supported diagnoses of communication breakdowns whilst allowing time to process query results. Conversely, L1 speakers preferred smart speakers, with audio feedback being seen as sufficient. We discuss the need to tailor the IPA experience for L2 users, emphasising visual feedback whilst reducing the burden of language production.
While Alexa can perform over 100,000 skills on paper, its capability covers only a fraction of what is possible on the web. To reach the full potential of an assistant, it is desirable that individuals can create skills to automate their personal web browsing routines. Many seemingly simple routines, however, such as monitoring COVID-19 stats for their hometown, detecting changes in their childs grades online, or sending personally-addressed messages to a group, cannot be automated without conventional programming concepts such as conditional and iterative evaluation. This paper presents VASH (Voice Assistant Scripting Helper), a new system that empowers users to create useful web-based virtual assistant skills without learning a formal programming language. With VASH, the user demonstrates their task of interest in the browser and issues a few voice commands, such as naming the skills and adding conditions on the action. VASH turns these multi-modal specifications into skills that can be invoked invoice on a virtual assistant. These skills are represented in a formal programming language we designed called WebTalk, which supports parameterization, function invocation, conditionals, and iterative execution. VASH is a fully working prototype that works on the Chrome browser on real-world websites. Our user study shows that users have many web routines they wish to automate, 81% of which can be expressed using VASH. We found that VASH Is easy to learn, and that a majority of the users in our study want to use our system.
Personal Information Management (PIM) refers to the practice and the study of the activities a person performs in order to acquire or create, store, organize, maintain, retrieve, use, and distribute information in each of its many forms (paper and digital, in e-mails, files, Web pages, text messages, tweets, posts, etc.) as needed to meet lifes many goals (everyday and long-term, work-related and not) and to fulfill lifes many roles and responsibilities (as parent, spouse, friend, employee, member of community, etc.). PIM activities are an effort to establish, use, and maintain a mapping between information and need. Activities of finding (and re-finding) move from a current need toward information while activities of keeping move from encountered information toward anticipated need. Meta-level activities such as maintaining, organizing, and managing the flow of information focus on the mapping itself. Tools and techniques of PIM can promote information integration with benefits for each kind of PIM activity and across the life cycle of personal information. Understanding how best to accomplish this integration without inadvertently creating problems along the way is a key challenge of PIM.
Modern society has led many people to become consumers of data unlike previous generations. How this shift in the way information is communicated and received - including in areas of science - and affects perception and comprehension is still an open question. This study examined one aspect of this digital age: perceptions of astronomical images and their labels, on mobile platforms. Participants were n = 2183 respondents to an online survey, and two focus groups (n = 12 astrophysicists; n = 11 lay public). Online participants were randomly assigned to 1 of 12 images, and compared two label formats. Focus groups compared mobile devices and label formats. Results indicated that the size and quality of the images on the mobile devices affected label comprehension and engagement. The question label format was significantly preferred to the fun fact. Results are discussed in terms of effective science communication using technology.
Traditionally, the regime of mental healthcare has followed an episodic psychotherapy model wherein patients seek care from a provider through a prescribed treatment plan developed over multiple provider visits. Recent advances in wearable and mobile technology have generated increased interest in digital mental healthcare that enables individuals to address episodic mental health symptoms. However, these efforts are typically reactive and symptom-focused and do not provide comprehensive, wrap-around, customized treatments that capture an individuals holistic mental health model as it unfolds over time. Recognizing that each individual is unique, we present the notion of Personalized Mental Health Navigation (MHN): a therapist-in-the-loop, cybernetic goal-based system that deploys a continuous cyclic loop of measurement, estimation, guidance, to steer the individuals mental health state towards a healthy zone. We outline the major components of MHN that is premised on the development of an individuals personal mental health state, holistically represented by a high-dimensional cover of multiple knowledge layers such as emotion, biological patterns, sociology, behavior, and cognition. We demonstrate the feasibility of the personalized MHN approach via a 12-month pilot case study for holistic stress management in college students and highlight an instance of a therapist-in-the-loop intervention using MHN for monitoring, estimating, and proactively addressing moderately severe depression over a sustained period of time. We believe MHN paves the way to transform mental healthcare from the current passive, episodic, reactive process (where individuals seek help to address symptoms that have already manifested) to a continuous and navigational paradigm that leverages a personalized model of the individual, promising to deliver timely interventions to individuals in a holistic manner.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا