Do you want to publish a course? Click here

Magnetic structures on locally inverted interlayer coupling region of bilayer magnetic system

59   0   0.0 ( 0 )
 Added by Changyeon Won
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the magnetic structures in a bilayer magnetic system with the locally inverted interlayer coupling region using Monte Carlo simulation. Stabilization of multiple magnetic structures including the magnetic skyrmion is possible in the locally inverted interlayer coupling region. Various factors such as the region area, anisotropy, interlayer coupling strength, and exchange coupling strength affects the properties of the structures including its size and chirality. We obtain conditions for their stabilization and for the magnetic structural transitions. Dzyaloshinskii-Moriya interaction (DMI) and the dipolar interaction play a prominent role as they enhance the formation and the stability of structures significantly. An asymmetric feature can arise from the broken inversion symmetry in the structure formation, and it gives an interfacial DMI, which stabilizes the skyrmion. It is realized that the dipole interaction also acts as an effective interfacial DMI in the system.



rate research

Read More

When monolayers of two-dimensional (2D) materials are stacked into van der Waals structures, interlayer electronic coupling can introduce entirely new properties, as exemplified by recent discoveries of moire bands that host highly correlated electronic states and quantum dot-like interlayer exciton lattices. Here we show the magnetic control of interlayer electronic coupling, as manifested in tunable excitonic transitions, in an A-type antiferromagnetic 2D semiconductor CrSBr. Excitonic transitions in bilayer and above can be drastically changed when the magnetic order is switched from layered antiferromagnetic to the field-induced ferromagnetic state, an effect attributed to the spin-allowed interlayer hybridization of electron and hole orbitals in the latter, as revealed by GW-BSE calculations. Our work uncovers a magnetic approach to engineer electronic and excitonic effects in layered magnetic semiconductors.
145 - D. I. Pikulin , T. Hyart , Shuo Mi 2014
We calculate the conductance of a two-dimensional bilayer with inverted electron-hole bands, to study the sensitivity of the quantum spin Hall insulator (with helical edge conduction) to the combination of electrostatic disorder and a perpendicular magnetic field. The characteristic breakdown field for helical edge conduction splits into two fields with increasing disorder, a field $B_{c}$ for the transition into a quantum Hall insulator (supporting chiral edge conduction) and a smaller field $B_{c}$ for the transition to bulk conduction in a quasi-metallic regime. The spatial separation of the inverted bands, typical for broken-gap InAs/GaSb quantum wells, is essential for the magnetic-field induced bulk conduction --- there is no such regime in HgTe quantum wells.
Van der Waals heterostructures composed of transition metal dichalcogenide monolayers (TMDs) are characterized by their truly rich excitonic properties which are determined by their structural, geometric and electronic properties: In contrast to pure monolayers, electrons and holes can be hosted in different materials, resulting in highly tunable dipolar manyparticle complexes. However, for genuine spatially indirect excitons, the dipolar nature is usually accompanied by a notable quenching of the exciton oscillator strength. Via electric and magnetic field dependent measurements, we demonstrate, that a slightly biased pristine bilayer MoS$_2$ hosts strongly dipolar excitons, which preserve a strong oscillator strength. We scrutinize their giant dipole moment, and shed further light on their orbital- and valley physics via bias-dependent magnetic field measurements.
The exchange coupling underlies ferroic magnetic coupling and is thus the key element that governs statics and dynamics of magnetic systems. This fundamental interaction comes in two flavors - symmetric and antisymmetric coupling. While symmetric coupling leads to ferro- and antiferromagnetism, antisymmetric coupling has attracted significant interest owing to its major role in promoting topologically non-trivial spin textures that promise high-speed and energy-efficient devices. So far, the antisymmetric exchange coupling rather short-ranged and limited to a single magnetic layer has been demonstrated, while the symmetric coupling also leads to long-range interlayer exchange coupling. Here, we report the missing component of the long-range antisymmetric interlayer exchange coupling in perpendicularly magnetized synthetic antiferromagnets with parallel and antiparallel magnetization alignments. Asymmetric hysteresis loops under an in-plane field unambiguously reveal a unidirectional and chiral nature of this novel interaction, which cannot be accounted for by existing coupling mechanisms, resulting in canted magnetization alignments. This can be explained by spin-orbit coupling combined with reduced symmetry in multilayers. This new class of chiral interaction provides an additional degree of freedom for engineering magnetic structures and promises to enable a new class of three-dimensional topological structures.
For epitaxial trilayers of the magnetic rare-earth metals Gd and Tb, exchange coupled through a non-magnetic Y spacer layer, element-specific hysteresis loops were recorded by the x-ray magneto-optical Kerr effect at the rare-earth $M_5$ thresholds. This allowed us to quantitatively determine the strength of interlayer exchange coupling (IEC). In addition to the expected oscillatory behavior as a function of spacer-layer thickness $d_Y$, a temperature-induced sign reversal of IEC was observed for constant $d_Y$, arising from magnetization-dependent electron reflectivities at the magnetic interfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا