Do you want to publish a course? Click here

Chiral magnetic interlayer coupling in synthetic antiferromagnets

170   0   0.0 ( 0 )
 Added by Dong-Soo Han
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The exchange coupling underlies ferroic magnetic coupling and is thus the key element that governs statics and dynamics of magnetic systems. This fundamental interaction comes in two flavors - symmetric and antisymmetric coupling. While symmetric coupling leads to ferro- and antiferromagnetism, antisymmetric coupling has attracted significant interest owing to its major role in promoting topologically non-trivial spin textures that promise high-speed and energy-efficient devices. So far, the antisymmetric exchange coupling rather short-ranged and limited to a single magnetic layer has been demonstrated, while the symmetric coupling also leads to long-range interlayer exchange coupling. Here, we report the missing component of the long-range antisymmetric interlayer exchange coupling in perpendicularly magnetized synthetic antiferromagnets with parallel and antiparallel magnetization alignments. Asymmetric hysteresis loops under an in-plane field unambiguously reveal a unidirectional and chiral nature of this novel interaction, which cannot be accounted for by existing coupling mechanisms, resulting in canted magnetization alignments. This can be explained by spin-orbit coupling combined with reduced symmetry in multilayers. This new class of chiral interaction provides an additional degree of freedom for engineering magnetic structures and promises to enable a new class of three-dimensional topological structures.



rate research

Read More

Noncollinear chiral spin textures in ferromagnetic multilayers are at the forefront of recent research in nano-magnetism with the promise for fast and energy-efficient devices. The recently demonstrated possibilities to stabilize such chiral structures in synthetic antiferromagnets (SAF) has raised interests as they are immune to dipolar field, hence favoring the stabilization of ultra small textures, improve mobility and avoid the transverse deflections of moving skyrmions limiting the efficiency in some foreseen applications. However, such systems with zero net magnetization are hence difficult to characterize by most of the standard techniques. Here, we report that the relevant parameters of a magnetic SAF texture, those being its period, its type (Neel or Bloch) and its chirality (clockwise or counterclockwise), can be directly determined using the circular dichroism in x-ray resonant scattering (CD-XRMS) at half integer multilayer Bragg peaks in reciprocal space. The analysis of the dependence in temperature down to 40K allows us moreover to address the question of the temperature stability of a spin spiral in a SAF sample and of the temperature scaling of the symmetric and antisymmetric exchange interactions.
129 - Wei He , Z. K. Xie , Rui Sun 2021
The magnon-magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce the magnon-magnon coupling, the parity symmetry between two magnetization needs to be broken. Here we experimentally demonstrate a convenient method to break the parity symmetry by the asymmetric thickness of two magnetic layers and thus introduce a magnon-magnon coupling in Ir-based synthetic antiferromagnets CoFeB(10 nm)/Ir(tIr=0.6 nm, 1.2 nm)/CoFeB(13 nm). Remarkably, we find that the weakly uniaxial anisotropy field (~ 20 Oe) makes the magnon-magnon coupling anisotropic. The coupling strength presented by a characteristic anticrossing gap varies in the range between 0.54 GHz and 0.90 GHz for tIr =0.6 nm, and between nearly zero to 1.4 GHz for tIr = 1.2 nm, respectively. Our results demonstrate a feasible way to induce the magnon-magnon coupling by an asymmetric structure and tune the coupling strength by varying the direction of in-plane magnetic field. The magnon-magnon coupling in this highly tunable material system could open exciting perspectives for exploring quantum-mechanical coupling phenomena.
107 - A. Sud , Y. Koike , S. Iihama 2020
We report in this study the current-induced-torque excitation of acoustic and optical modes in Ta/NiFe/Ru/NiFe/Ta synthetic antiferromagnet stacks grown on SiO2/Si substrates. The two Ta layers serve as spin torque sources with the opposite polarisations both in spin currents and Oersted fields acting on their adjacent NiFe layers. This can create the odd symmetry of spatial spin torque distribution across the growth direction, allowing us to observe different spin-wave excitation efficiency from synthetic antiferromagnets excited by homogeneous torques. We analyse the torque symmetry by in-plane angular dependence of symmetric and anti-symmetric lineshape amplitudes for their resonance and confirm that the parallel (perpendicular) pumping nature for the acoustic (optical) modes in our devices, which is in stark difference from the modes excited by spatially homogeneous torques. We also present our macrospin model for this particular spin-torque excitation geometry, which excellently supports our experimental observation. Our results offer capability of controlling spin-wave excitations by local spin-torque sources and we can explore further spin-wave control schemes based on this concept.
We study the combined effects of spin transfer torque, voltage modulation of interlayer exchange coupling and magnetic anisotropy on the switching behavior of perpendicular magnetic tunnel junctions (p-MTJs). In asymmetric p-MTJs, a linear-in-voltage dependence of interlayer exchange coupling enables the effective perpendicular anisotropy barrier to be lowered for both voltage polarities. This mechanism is shown to reduce the critical switching current and effective activation energy. Finally, we analyze the possibility of having switching via interlayer exchange coupling only.
120 - W. T. Geng , V. Wang , J. B. Lin 2020
We reveal by first-principles calculations that the interlayer binding in a twisted MoS2/MoTe2 heterobilayer decreases with increasing twist angle, due to the increase of the interlayer overlapping degree, a geometric quantity describing well the interlayer steric effect. The binding energy is found to be a Gaussian-like function of twist angle. The resistance to rotation, an analogue to the interlayer sliding barrier, can also be defined accordingly. In sharp contrast to the case of MoS2 homobilayer, here the energy band gap reduces with increasing twist angle. We find a remarkable interlayer charge transfer from MoTe2 to MoS2 which enlarges the band gap, but this charge transfer weakens with greater twisting and interlayer overlapping degree. Our discovery provides a solid basis in twistronics and practical instruction in band structure engineering of van der Waals heterostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا