Do you want to publish a course? Click here

Magnetic semimetals and quantized anomalous Hall effect in EuB6

114   0   0.0 ( 0 )
 Added by Simin Nie
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Exploration of the novel relationship between magnetic order and topological semimetals has received enormous interest in a wide range of both fundamental and applied research. Here we predict that soft ferromagnetic (FM) material EuB6 can achieve multiple topological semimetal phases by simply tuning the direction of the magnetic moment. Explicitly, EuB6 is a topological nodal-line semimetal when the moment is aligned along the [001] direction, and it evolves into a Weyl semimetal with three pairs of Weyl nodes by rotating the moment to the [111] direction. Interestingly, we identify a novel semimetal phase featuring the coexistence of a nodal line and Weyl nodes with the moment in the [110] direction. Topological surface states and anomalous Hall conductivity, which is sensitive to the magnetic order, have been computed and are expected to be experimentally observable. Large-Chern-number quantum anomalous Hall effect can be realized in its [111]-oriented quantum-well structure.



rate research

Read More

The modulation of the electronic structure by an external magnetic field, which could further control the electronic transport behaviour of a system, is highly desired. Herein, an unconventional anomalous Hall effect (UAHE) was observed during magnetization process in the magnetic Weyl semimetal EuB6, resulting in an unconventional anomalous Hall-conductivity as high as ~1000 {Omega}-1 cm-1 and a Hall-angle up to ~10%. The system even only shows the UAHE, meaning that the anomalous Hall signal completely comes from the UAHE, with UAHE accounting for 100% and 87.5% of the AHE and the total Hall response, respectively. Theoretical calculations revealed that a largely enhanced Berry curvature was induced by the dynamic folding of the topological bands due to the spin-canting effect under external magnetic fields, which further produced the prominent UAHE even in a low-field magnetization process. These findings elucidate the connection between the non-collinear magnetism and the topological electronic state as well as reveal a novel manner to manipulate the transport behaviour of topological electrons.
271 - Shiva Heidari , Reza Asgari 2019
In this paper, the chiral Hall effect of strained Weyl semimetals without any external magnetic field is proposed. Electron-phonon coupling emerges in the low-energy fermionic sector through a pseudogauge potential. We show that, by using chiral kinetic theory, the chiral Hall effect appears as a response to a real time-varying electric field in the presence of structural distortion and it causes spatial chirality and charges separation in a Weyl system. We also show that the coupling of the electrons to acoustic phonons as a gapless excitation leads to emerging an optical absorption peak at $omega=omega_{el}$, where $omega_{el}$ is defined as a characteristic frequency associated with the pseudomagnetic field. We also propose the strain-induced planar Hall effect as another transport signature of the chiral-anomaly equation.
Breaking the time-reversal symmetry of a topological insulator (TI) by ferromagnetism can induce exotic magnetoelectric phenomena such as quantized anomalous Hall (QAH) effect. Experimental observation of QAH effect in a magnetically doped TI requires ferromagnetism not relying on the charge carriers. We have realized the ferromagnetism independent of both polarity and density of carriers in Cr-doped BixSb2-xTe3 thin films grown by molecular beam epitaxy. Meanwhile, the anomalous Hall effect is found significantly enhanced with decreasing carrier density, with the anomalous Hall angle reaching unusually large value 0.2 and the zero field Hall resistance reaching one quarter of the quantum resistance (h/e2), indicating the approaching of the QAH regime. The work paves the way to ultimately realize QAH effect and other unique magnetoelectric phenomena in TIs.
We report the observation of a quantum anomalous Hall effect in twisted bilayer graphene showing Hall resistance quantized to within .1% of the von Klitzing constant $h/e^2$ at zero magnetic field.The effect is driven by intrinsic strong correlations, which polarize the electron system into a single spin and valley resolved moire miniband with Chern number $C=1$. In contrast to extrinsic, magnetically doped systems, the measured transport energy gap $Delta/k_Bapprox 27$~K is larger than the Curie temperature for magnetic ordering $T_Capprox 9$~K, and Hall quantization persists to temperatures of several Kelvin. Remarkably, we find that electrical currents as small as 1~nA can be used to controllably switch the magnetic order between states of opposite polarization, forming an electrically rewritable magnetic memory.
259 - Rui Yu , Wei Zhang , H. J. Zhang 2010
The Hall effect, the anomalous Hall effect and the spin Hall effect are fundamental transport processes in solids arising from the Lorentz force and the spin-orbit coupling respectively. The quant
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا