No Arabic abstract
In this paper, we study the problem of global existence of weak solutions for the quasi-stationary compressible Stokes equations with an anisotropic viscous tensor. The key element of our proof is the control of a particular defect measure associated to the pressure which avoids the use of the eective ux. Using this new tool, we solve an open problem namely global existence of solutions {`a} la Leray for such a system without assuming any restriction on the anisotropy amplitude. It provides a exible and natural way to treat compressible quasilinear Stokes systems which are important for instance in biology, porous media, supra-conductivity or other applications in the low Reynolds number regime.
In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $dot{H}^{-alpha}(mathbb{R}^{3})$ or $dot{H}^{-alpha}(mathbb{T}^{3})$ with $0<alphaleq 1/2$. This is achieved by randomizing the initial data and showing that the energy of the solution modulus the linear part keeps finite for all $tgeq0$. Moreover, the energy of the solutions is also finite for all $t>0$. This improves the recent result of Nahmod, Pavlovi{c} and Staffilani on (SIMA, [1])in which $alpha$ is restricted to $0<alpha<frac{1}{4}$.
This paper is dedicated to the construction of global weak solutions to the quantum Navier-Stokes equation, for any initial value with bounded energy and entropy. The construction is uniform with respect to the Planck constant. This allows to perform the semi-classical limit to the associated compressible Navier-Stokes equation. One of the difficulty of the problem is to deal with the degenerate viscosity, together with the lack of integrability on the velocity. Our method is based on the construction of weak solutions that are renormalized in the velocity variable. The existence, and stability of these solutions do not need the Mellet-Vasseur inequality.
We study the well-posedness of a coupled Cahn-Hilliard-Stokes-Darcy system which is a diffuse-interface model for essentially immiscible two phase incompressible flows with matched density in a karstic geometry. Existence of finite energy weak solution that is global in time is established in both 2D and 3D. Weak-strong uniqueness property of the weak solutions is provided as well.
The aim of this paper is to prove the existence of almost global weak solutions for the unsteady nonlinear elastodynamics system in dimension $d=2$ or $3$, for a range of strain energy density functions satisfying some given assumptions. These assumptions are satisfied by the main strain energies generally considered. The domain is assumed to be bounded, and mixed boundary conditions are considered. Our approach is based on a nonlinear parabolic regularization technique, involving the $p$-Laplace operator. First we prove the existence of a local-in-time solution for the regularized system, by a fixed point technique. Next, using an energy estimate, we show that if the data are small enough, bounded by $varepsilon >0$, then the maximal time of existence does not depend on the parabolic regularization parameter, and the behavior of the lifespan $T$ is $gtrsim log (1/varepsilon)$, defining what we call here {it almost global existence}. The solution is thus obtained by passing this parameter to zero. The key point of our proof is due to recent nonlinear Korns inequalities proven by Ciarlet & Mardare in $mathrm{W}^{1,p}$ spaces, for $p>2$.
This paper investigates an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion begin{eqnarray} left{begin{array}{lll} n_t+ucdot abla n= ablacdot(| abla n|^{p-2} abla n)- ablacdot(nchi(c) abla c),& xinOmega, t>0, c_t+ucdot abla c=Delta c-nf(c),& xinOmega, t>0, u_t+(ucdot abla) u=Delta u+ abla P+n ablaPhi,& xinOmega, t>0, ablacdot u=0,& xinOmega, t>0 end{array}right. end{eqnarray} under homogeneous boundary conditions of Neumann type for $n$ and $c$, and of Dirichlet type for $u$ in a bounded convex domain $Omegasubset mathbb{R}^3$ with smooth boundary. Here, $Phiin W^{1,infty}(Omega)$, $0<chiin C^2([0,infty))$ and $0leq fin C^1([0,infty))$ with $f(0)=0$. It is proved that if $p>frac{32}{15}$ and under appropriate structural assumptions on $f$ and $chi$, for all sufficiently smooth initial data $(n_0,c_0,u_0)$ the model possesses at least one global weak solution.