No Arabic abstract
This paper is dedicated to the construction of global weak solutions to the quantum Navier-Stokes equation, for any initial value with bounded energy and entropy. The construction is uniform with respect to the Planck constant. This allows to perform the semi-classical limit to the associated compressible Navier-Stokes equation. One of the difficulty of the problem is to deal with the degenerate viscosity, together with the lack of integrability on the velocity. Our method is based on the construction of weak solutions that are renormalized in the velocity variable. The existence, and stability of these solutions do not need the Mellet-Vasseur inequality.
In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $dot{H}^{-alpha}(mathbb{R}^{3})$ or $dot{H}^{-alpha}(mathbb{T}^{3})$ with $0<alphaleq 1/2$. This is achieved by randomizing the initial data and showing that the energy of the solution modulus the linear part keeps finite for all $tgeq0$. Moreover, the energy of the solutions is also finite for all $t>0$. This improves the recent result of Nahmod, Pavlovi{c} and Staffilani on (SIMA, [1])in which $alpha$ is restricted to $0<alpha<frac{1}{4}$.
In this paper, we study the problem of global existence of weak solutions for the quasi-stationary compressible Stokes equations with an anisotropic viscous tensor. The key element of our proof is the control of a particular defect measure associated to the pressure which avoids the use of the eective ux. Using this new tool, we solve an open problem namely global existence of solutions {`a} la Leray for such a system without assuming any restriction on the anisotropy amplitude. It provides a exible and natural way to treat compressible quasilinear Stokes systems which are important for instance in biology, porous media, supra-conductivity or other applications in the low Reynolds number regime.
We construct forward self-similar solutions (expanders) for the compressible Navier-Stokes equations. Some of these self-similar solutions are smooth, while others exhibit a singularity do to cavitation at the origin.
In this paper we consider the barotropic compressible quantum Navier-Stokes equations with a linear density dependent viscosity and its limit when the scaled Planck constant vanish. Following recent works on degenerate compressible Navier-Stokes equations, we prove the global existence of weak solutions by the use of a singular pressure close to vacuum. With such singular pressure, we can use the standard definition of global weak solutions which also allows to justify the limit when the scaled Planck constant denoted by $epsilon$ tends to 0.
It is expected in physics that the homogeneous quantum Boltzmann equation with Fermi-Dirac or Bose-Einstein statistics and with Maxwell-Boltzmann operator (neglecting effect of the statistics) for the weak coupled gases will converge to the homogeneous Fokker-Planck-Landau equation as the Planck constant $hbar$ tends to zero. In this paper and the upcoming work cite{HLP2}, we will provide a mathematical justification on this semi-classical limit. Key ingredients into the proofs are the new framework to catch the {it weak projection gradient}, which is motivated by Villani cite{V1} to identify the $H$-solution for Fokker-Planck-Landau equation, and the symmetric structure inside the cubic terms of the collision operators.