Do you want to publish a course? Click here

Parton distributions from nonlocal chiral SU(3) effective theory: Flavor asymmetries

132   0   0.0 ( 0 )
 Added by Ping Wang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Using recently derived results for one-loop hadronic splitting functions from a nonlocal implementation of chiral effective theory, we study the contributions from pseudoscalar meson loops to flavor asymmetries in the proton. Constraining the parameters of the regulating functions by inclusive production of $n$, $Delta^{++}$, $Lambda$ and $Sigma^{*+}$ baryons in $pp$ collisions, we compute the shape of the light antiquark asymmetry $bar{d}-bar{u}$ in the proton and the strange asymmetry $s-bar{s}$ in the nucleon sea. With these constraints, the magnitude of the $bar{d}-bar{u}$ asymmetry is found to be compatible with that extracted from the Fermilab E866 Drell-Yan measurement, with no indication of a sign change at large values of $x$, and an integrated value in the range $langle bar d-bar u rangle approx 0.09-0.17$. The $s-bar s$ asymmetry is predicted to be positive at $x > 0$, with compensating negative contributions at $x=0$, and an integrated $x$-weighted moment in the range $langle x (s-bar s) rangle approx (0.9-2.5) times 10^{-3}$.



rate research

Read More

We consider hadronic weak decays of beauty-baryons into charmless baryons and pseudoscalar mesons in a general framework based on $SU(3)$ decomposition of the decay amplitudes. The advantage of the approach lies in the ability to perform an $SU(3)$ analysis of these decays without any particular set of dynamical assumptions while accounting for the effects of an arbitrarily broken $SU(3)$ flavor symmetry. Dictated by the symmetries of the effective Hamiltonian that allow us to relate or neglect reduced $SU(3)$ amplitudes, we derive several sum rule relations between amplitudes and relations between $CP$ asymmetries in these decays and identify those that hold even if $SU(3)$ is broken.
108 - Shu Lin , Aradhya Shukla 2019
We revisit the chiral kinetic equation from high density effective theory approach, finding a chiral kinetic equation differs from counterpart derived from field theory in high order terms in the $O(1/mu)$ expansion, but in agreement with the equation derived in on-shell effective field theory upon identification of cutoff. By using reparametrization transformation properties of the effective theory, we show that the difference in kinetic equations from two approaches are in fact expected. It is simply due to different choices of degree of freedom by effective theory and field theory. We also show that they give equivalent description of the dynamics of chiral fermions.
We present the first determination of the binding energy of the $H$ dibaryon in the continuum limit of lattice QCD. The calculation is performed at five values of the lattice spacing $a$, using O($a$)-improved Wilson fermions at the SU(3)-symmetric point with $m_pi=m_Kapprox 420$ MeV. Energy levels are extracted by applying a variational method to correlation matrices of bilocal two-baryon interpolating operators computed using the distillation technique. Our analysis employs Luschers finite-volume quantization condition to determine the scattering phase shifts from the spectrum and vice versa, both above and below the two-baryon threshold. We perform global fits to the lattice spectra using parametrizations of the phase shift, supplemented by terms describing discretization effects, then extrapolate the lattice spacing to zero. The phase shift and the binding energy determined from it are found to be strongly affected by lattice artifacts. Our estimate of the binding energy in the continuum limit of three-flavor QCD is $B_H=3.97pm1.16_{rm stat}pm0.86_{rm syst}$ MeV.
We review heavy quark flavor and spin symmetries, their exploitation in heavy meson effective theories and the flavored couplings of charmed and light mesons in the definition of their effective Lagrangians. We point out how nonperturbative continuum QCD approaches based on Dyson-Schwinger and Bethe-Salpeter equations can be used to calculate strong and leptonic decays of open-charm mesons and heavy quarkonia. The strong decay $D^*to Dpi$ serves as a benchmark, as it is the only physical open-charm observable that can be related to the effective Lagrangians couplings. Nonetheless, a quantitative comparison of $D^*Dpi$, $rho DD$, $rho D^*D$ and $rho D^* D^*$ couplings for a range of off-shell momenta of the $rho$-meson invalidates SU(4)$_F$ symmetry relations between these couplings. Thus, besides the breaking of flavor symmetry by mass terms in the Lagrangians, the flavor-symmetry breaching in couplings and their dependence on the $rho$-meson virtuality cannot be ignored. We also take the opportunity to present new results for the effective $J/psi DD$ and $J/psi D^*D$ couplings. We conclude this contribution with a discussion on how the description of pseudoscalar and vector $D$, $D_s$, $B$ and $B_s$ meson properties can be drastically improved with a modest modification of the flavor-dependence in the Bethe-Salpeter equation.
Within the three-flavor PNJL and EPNJL chiral quark models we have obtained pseudoscalar meson properties in quark matter at finite temperature $T$ and baryochemical potential $mu_B$. We compare the meson pole (Breit-Wigner) approximation with the Beth-Uhlenbeck (BU) approach that takes into account the continuum of quark-antiquark scattering states when determining the partial densities of pions and kaons. We evaluate the kaon-to-pion ratios along the (pseudo-)critical line in the $T-mu_B$ plane as a proxy for the chemical freezeout line, whereby the variable $x=T/mu_B$ is introduced that corresponds to the conserved entropy per baryon as initial condition for the heavy-ion collision experiments. We present a comparison with the experimental pattern of kaon-to-pion ratios within the BU approach and using $x$-dependent pion and strange quark potentials. A sharp horn effect in the energy dependence $K^+/pi^+$ ratio is explained by the enhanced pion production at energies above $sqrt{s_{NN}}=8$ GeV, when the system enters the regime of meson dominance. This effect is in line with the enhancement of low-momentum pion spectra that is discussed as a precursor of the pion Bose condensation and entails the occurrence of a nonequilibrium pion chemical potential of the order of the pion mass. We elucidate that the horn effect is not related to the existence of a critical endpoint in the QCD phase diagram.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا