Do you want to publish a course? Click here

Non-leptonic beauty baryon decays and $CP$-asymmetries based on $SU(3)$-Flavor analysis

103   0   0.0 ( 0 )
 Added by Shibasis Roy
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider hadronic weak decays of beauty-baryons into charmless baryons and pseudoscalar mesons in a general framework based on $SU(3)$ decomposition of the decay amplitudes. The advantage of the approach lies in the ability to perform an $SU(3)$ analysis of these decays without any particular set of dynamical assumptions while accounting for the effects of an arbitrarily broken $SU(3)$ flavor symmetry. Dictated by the symmetries of the effective Hamiltonian that allow us to relate or neglect reduced $SU(3)$ amplitudes, we derive several sum rule relations between amplitudes and relations between $CP$ asymmetries in these decays and identify those that hold even if $SU(3)$ is broken.



rate research

Read More

We consider charmless weak decays of beauty-baryons into decuplet baryons and pseudoscalar mesons in a general framework based on $SU(3)$-flavor decomposition of the decay amplitudes. The dynamical assumption independent $SU(3)$ analysis accounts for the effects of an arbitrarily broken $SU(3)$ symmetry in these decays. An alternative approach in terms of quark diagrams is also provided and compared with the $SU(3)$ decomposition in the limit of exact $SU(3)$-flavor symmetry. Furthermore, the symmetries of the effective Hamiltonian is used to relate or neglect reduced $SU(3)$ amplitudes to derive several sum rule relations between amplitudes and relations between $CP$ asymmetries in these decays and identify those that hold even if $SU(3)$ is broken.
We study the three-body anti-triplet ${bf B_c}to {bf B_n}MM$ decays with the $SU(3)$ flavor ($SU(3)_f$) symmetry, where ${bf B_c}$ denotes the charmed baryon anti-triplet of $(Xi_c^0,-Xi_c^+,Lambda_c^+)$, and ${bf B_n}$ and $M(M)$ represent baryon and meson octets, respectively. By considering only the S-wave $MM$-pair contributions without resonance effects, the decays of ${bf B_c}to {bf B_n}MM$ can be decomposed into irreducible forms with 11 parameters under $SU(3)_f$, which are fitted by the 14 existing data, resulting in a reasonable value of $chi^2/d.o.f=2.8$ for the fit. Consequently, we find that the triangle sum rule of ${cal A}(Lambda_c^+to nbar K^0 pi^+)-{cal A}(Lambda_c^+to pK^- pi^+)-sqrt 2 {cal A}(Lambda_c^+to pbar K^0 pi^0)=0$ given by the isospin symmetry holds under $SU(3)_f$, where ${cal A}$ stands for the decay amplitude. In addition, we predict that ${cal B}(Lambda_c^+to n pi^{+} bar{K}^{0})=(0.9pm 0.8)times 10^{-2}$, which is $3-4$ times smaller than the BESIII observation, indicating the existence of the resonant states. For the to-be-observed ${bf B_c}to {bf B_n}MM$ decays, we compute the branching fractions with the $SU(3)_f$ amplitudes to be compared to the BESIII and LHCb measurements in the future.
321 - Michael Gronau 2007
Precision tests of the Kobayashi-Maskawa model of CP violation are discussed, pointing out possible signatures for other sources of CP violation and for new flavor-changing operators. The current status of the most accurate tests is summarized.
The weak and electromagnetic radiative baryon decays of octet $T_{8}$, decuplet $T_{10}$, single charmed anti-triplet $T_{c3}$ and sextet $T_{c6}$, single heavy bottomed anti-triplet $T_{b3}$ and sextet $T_{b6}$ are investigated by using SU(3) flavor symmetry irreducible representation approach. We analyze the contributions from a single quark transition $q_1to q_2gamma$ and $W$ exchange transitions, and find that the amplitudes could be easily related by SU(3) flavor symmetry in the $T_{b3,b6}$ weak radiative decays, $T_{c3,c6}$ weak radiative decays, $T_{10}to T_{8}gamma $ weak decays, $T_{10}to T_{10}gamma $ weak decays and $T_{10}to T_{8}gamma $ electromagnetic decays. Nevertheless, the amplitude relations are a little complex in the $T_{8}to T_{8}gamma$ and $T_{8}to T_{10}gamma$ weak decays due to quark antisymmetry in $T_{8}$ and $W$ exchange contributions. Predictions for branching ratios of $Lambda^{0}_bto ngamma$, $Xi^{-}_bto Xi^-gamma$, $Xi^{-}_bto Sigma^-gamma$, $Xi^{0}_bto Sigma^0gamma$, $Xi^{0}_bto Lambda^0gamma$, $Xi^{0}_bto Xi^0gamma$, $Xi^{*}to Xigamma$, $Sigma^{*0}to Sigma^{0}gamma$, $Delta^0to ngamma$ and $Delta^+to pgamma$ are given. The results in this work can be used to test SU(3) flavor symmetry approach in the radiative baryon decays by the future experiments at BESIII, LHCb and Belle-II.
Using recently derived results for one-loop hadronic splitting functions from a nonlocal implementation of chiral effective theory, we study the contributions from pseudoscalar meson loops to flavor asymmetries in the proton. Constraining the parameters of the regulating functions by inclusive production of $n$, $Delta^{++}$, $Lambda$ and $Sigma^{*+}$ baryons in $pp$ collisions, we compute the shape of the light antiquark asymmetry $bar{d}-bar{u}$ in the proton and the strange asymmetry $s-bar{s}$ in the nucleon sea. With these constraints, the magnitude of the $bar{d}-bar{u}$ asymmetry is found to be compatible with that extracted from the Fermilab E866 Drell-Yan measurement, with no indication of a sign change at large values of $x$, and an integrated value in the range $langle bar d-bar u rangle approx 0.09-0.17$. The $s-bar s$ asymmetry is predicted to be positive at $x > 0$, with compensating negative contributions at $x=0$, and an integrated $x$-weighted moment in the range $langle x (s-bar s) rangle approx (0.9-2.5) times 10^{-3}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا