Do you want to publish a course? Click here

In-situ observation of Hall Magnetohydrodynamic Cascade in Space Plasma

119   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present estimates of the turbulent energy cascade rate, derived from a Hall-MHD third-order law. We compute the contribution from the Hall term and the MHD term to the energy flux. We use MMS data accumulated in the magnetosheath and the solar wind, and compare the results with previously established simulation results. We find that in observation, the MHD contribution is dominant at inertial scales, as in the simulations, but the Hall term becomes significant in observations at larger scales than in the simulations. Possible reasons are offered for this unanticipated result.



rate research

Read More

The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment $mu$ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width $Delta mu$ (defined as the half peak-to-peak difference in the particle magnetic moment) and the bounce frequency $omega_b$. We perform test-particle simulations to investigate magnetic moment behavior when resonances overlapping occurs and during the interaction of a ring-beam particle distribution with a broad-band slab spectrum. We find that magnetic moment dynamics is strictly related to pitch angle $alpha$ for a low level of magnetic fluctuation, $delta B/B_0 = (10^{-3}, , 10^{-2})$, where $B_0$ is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function $f(alpha)$. This is a transient regime during which magnetic moment distribution $f(mu)$ exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance $<(Delta z)^2 >$ grows linearly in time as in normal diffusion. With strong fluctuations $f(alpha)$ isotropizes completely, spatial diffusion sets in and $f(mu)$ behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.
Non-thermal pickup ions (PUIs) are created in the solar wind (SW) by charge-exchange between SW ions (SWIs) and slow interstellar neutral atoms. It has long been theorized, but not directly observed, that PUIs should be preferentially heated at quasi-perpendicular shocks compared to thermal SWIs. We present in situ observations of interstellar hydrogen (H+) PUIs at an interplanetary shock by the New Horizons Solar Wind Around Pluto (SWAP) instrument at ~34 au from the Sun. At this shock, H+ PUIs are only a few percent of the total proton density but contain most of the internal particle pressure. A gradual reduction in SW flow speed and simultaneous heating of H+ SWIs is observed ahead of the shock, suggesting an upstream energetic particle pressure gradient. H+ SWIs lose ~85% of their energy flux across the shock and H+ PUIs are preferentially heated. Moreover, a PUI tail is observed downstream of the shock, such that the energy flux of all H+ PUIs is approximately six times that of H+ SWIs. We find that H+ PUIs, including their suprathermal tail, contain almost half of the total downstream energy flux in the shock frame.
Mirror modes in collisionless high-temperature plasmas represent macroscopic high-temperature quasi-superconductors. We explicitly calculate the bouncing electron contribution to the ion-mode growth rate, diamagnetic surface current responsible for the Meissner effect, and the weak attracting electric field. The mean electric field turns out to be negligible. Pairing is a second-order effect of minor importance. The physically important effect is the resonant interaction between bouncing electrons and the thermal ion-sound background. It is responsible for the mirror mode to evolve as a phase transition from normal to quasi-superconducting state.
The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov-Maxwell simulations of colissionless plasmas, Hall-magnetohydrodynamics, and Landau fluid models reproducing low-frequency kinetic effects, such as the Landau damping. In this partially developed turbulent scenario, estimates of the local and global scaling properties of different energy channels are obtained using a proxy of the local energy transfer (LET). This approach provides information on the structure of energy fluxes, under the assumption that the turbulent cascade transfers most of the energy that is then dissipated at small scales by various kinetic processes in this kind of plasmas.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا