No Arabic abstract
The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment $mu$ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width $Delta mu$ (defined as the half peak-to-peak difference in the particle magnetic moment) and the bounce frequency $omega_b$. We perform test-particle simulations to investigate magnetic moment behavior when resonances overlapping occurs and during the interaction of a ring-beam particle distribution with a broad-band slab spectrum. We find that magnetic moment dynamics is strictly related to pitch angle $alpha$ for a low level of magnetic fluctuation, $delta B/B_0 = (10^{-3}, , 10^{-2})$, where $B_0$ is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function $f(alpha)$. This is a transient regime during which magnetic moment distribution $f(mu)$ exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance $<(Delta z)^2 >$ grows linearly in time as in normal diffusion. With strong fluctuations $f(alpha)$ isotropizes completely, spatial diffusion sets in and $f(mu)$ behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfven waves and the Hall effect.
Magnetic field are transported and tangled by turbulence, even as they lose identity due to nonideal or resistive effects. On balance field lines undergo stretch-twist-fold processes. The curvature field, a scalar that measures the tangling of the magnetic field lines, is studied in detail here, in the context of magnetohydrodynamic turbulence. A central finding is that the magnitudes of the curvature and the magnetic field are anti-correlated. High curvature co-locates with low magnetic field, which gives rise to power-law tails of the probability density function of the curvature field. The curvature drift term that converts magnetic energy into flow and thermal energy, largely depends on the curvature field behavior, a relationship that helps to explain particle acceleration due to curvature drift. This adds as well to evidence that turbulent effects most likely play an essential role in particle energization since turbulence drives stronger tangled field configurations, and therefore curvature.
The nature of the turbulent energy transfer rate is studied using direct numerical simulations of weakly collisional space plasmas. This is done comparing results obtained from hybrid Vlasov-Maxwell simulations of colissionless plasmas, Hall-magnetohydrodynamics, and Landau fluid models reproducing low-frequency kinetic effects, such as the Landau damping. In this partially developed turbulent scenario, estimates of the local and global scaling properties of different energy channels are obtained using a proxy of the local energy transfer (LET). This approach provides information on the structure of energy fluxes, under the assumption that the turbulent cascade transfers most of the energy that is then dissipated at small scales by various kinetic processes in this kind of plasmas.
The relationship between magnetic reconnection and plasma turbulence is investigated using multipoint in-situ measurements from the Cluster spacecraft within a high-speed reconnection jet in the terrestrial magnetotail. We show explicitly that work done by electromagnetic fields on the particles, $mathbf{J}cdotmathbf{E}$, has a non-Gaussian distribution and is concentrated in regions of high electric current density. Hence, magnetic energy is converted to kinetic energy in an intermittent manner. Furthermore, we find the higher-order statistics of magnetic field fluctuations generated by reconnection are characterized by multifractal scaling on magnetofluid scales and non-Gaussian global scale invariance on kinetic scales. These observations suggest $mathbf{J}cdotmathbf{E}$ within the reconnection jet has an analogue in fluid-like turbulence theory in that it proceeds via coherent structures generated by an intermittent cascade. This supports the hypothesis that turbulent dissipation is highly nonuniform, and thus these results could have far reaching implications for space and astrophysical plasmas.