In this paper, we investigate the average achievable data rate (AADR) of the control information delivery from the ground control station (GCS) to unmanned-aerial-vehicle (UAV) under a 3-D channel, which requires ultra-reliable and low-latency communications (URLLC) to avoid collision. The value of AADR can give insights on the packet size design. Achievable data rate under short channel blocklength is adopted to characterize the system performance. The UAV is assumed to be uniformly distributed within a restricted space. We first adopt the Gaussian-Chebyshev quadrature (GCQ) to approximate the exact AADR. The tight lower bound of AADR is derived in a closed form. Numerical results verify the correctness and tightness of our derived results.
This letter considers an unmanned aerial vehicle (UAV)-enabled relay communication system for delivering latency-critical messages with ultra-high reliability, where the relay is operating under amplifier-and-forward (AF) mode. We aim to jointly optimize the UAV location and power to minimize decoding error probability while guaranteeing the latency constraints. Both the free-space channel model and three-dimensional (3-D) channel model are considered. For the first model, we propose a low-complexity iterative algorithm to solve the problem, while globally optimal solution is derived for the case when the signal-to-noise ratio (SNR) is extremely high. For the second model, we also propose a low-complexity iterative algorithm to solve the problem. Simulation results confirm the performance advantages of our proposed algorithms.
This work considers unmanned aerial vehicle (UAV) networks for collecting data covertly from ground users. The full-duplex UAV intends to gather critical information from a scheduled user (SU) through wireless communication and generate artificial noise (AN) with random transmit power in order to ensure a negligible probability of the SUs transmission being detected by the unscheduled users (USUs). To enhance the system performance, we jointly design the UAVs trajectory and its maximum AN transmit power together with the user scheduling strategy subject to practical constraints, e.g., a covertness constraint, which is explicitly determined by analyzing each USUs detection performance, and a binary constraint induced by user scheduling. The formulated design problem is a mixed-integer non-convex optimization problem, which is challenging to solve directly, but tackled by our developed penalty successive convex approximation (P-SCA) scheme. An efficient UAV trajectory initialization is also presented based on the Successive Hover-and-Fly (SHAF) trajectory, which also serves as a benchmark scheme. Our examination shows the developed P-SCA scheme significantly outperforms the benchmark scheme in terms of achieving a higher max-min average transmission rate from all the SUs to the UAV.
Large intelligent surfaces (LIS) present a promising new technology for enhancing the performance of wireless communication systems. Realizing the gains of LIS requires accurate channel knowledge, and in practice the channel estimation overhead can be large due to the passive nature of LIS. Here, we study the achievable rate of a LIS-assisted single-input single-output communication system, accounting for the pilot overhead of a least-squares channel estimator. We demonstrate that there exists an optimal $K^{*}$, which maximizes achievable rate by balancing the power gains offered by LIS and the channel estimation overhead. We present analytical approximations for $K^{*}$, based on maximizing an analytical upper bound on average achievable rate that we derive, and study the dependencies of $K^*$ on statistical channel and system parameters.
This work, for the first time, considers confidential data collection in the context of unmanned aerial vehicle (UAV) wireless networks, where the scheduled ground sensor node (SN) intends to transmit confidential information to the UAV without being intercepted by other unscheduled ground SNs. Specifically, a full-duplex (FD) UAV collects data from each scheduled SN on the ground and generates artificial noise (AN) to prevent the scheduled SNs confidential information from being wiretapped by other unscheduled SNs. We first derive the reliability outage probability (ROP) and secrecy outage probability (SOP) of a considered fixed-rate transmission, based on which we formulate an optimization problem that maximizes the minimum average secrecy rate (ASR) subject to some specific constraints. We then transform the formulated optimization problem into a convex problem with the aid of first-order restrictive approximation technique and penalty method. The resultant problem is a generalized nonlinear convex programming (GNCP) and solving it directly still leads to a high complexity, which motivates us to further approximate this problem as a second-order cone program (SOCP) in order to reduce the computational complexity. Finally, we develop an iteration procedure based on penalty successive convex approximation (P-SCA) algorithm to pursue the solution to the formulated optimization problem. Our examination shows that the developed joint design achieves a significant performance gain compared to a benchmark scheme.
This paper studies an unmanned aerial vehicle (UAV)-enabled multiple access channel (MAC), in which multiple ground users transmit individual messages to a mobile UAV in the sky. We consider a linear topology scenario, where these users locate in a straight line and the UAV flies at a fixed altitude above the line connecting them. Under this setup, we jointly optimize the one-dimensional (1D) UAV trajectory and wireless resource allocation to reveal the fundamental rate limits of the UAV-enabled MAC, under the users individual maximum power constraints and the UAVs maximum flight speed constraints. First, we consider the capacity-achieving non-orthogonal multiple access (NOMA) transmission with successive interference cancellation (SIC) at the UAV receiver. In this case, we characterize the capacity region by maximizing the average sum-rate of users subject to rate profile constraints. To optimally solve this highly non-convex problem, we transform the original speed-constrained trajectory optimization problem into a speed-free problem that is optimally solvable via the Lagrange dual decomposition. It is rigorously proved that the optimal 1D trajectory solution follows the successive hover-and-fly (SHF) structure. Next, we consider two orthogonal multiple access (OMA) transmission schemes, i.e., frequency-division multiple access (FDMA) and time-division multiple access (TDMA). We maximize the achievable rate regions in the two cases by jointly optimizing the 1D trajectory design and wireless resource (frequency/time) allocation. It is shown that the optimal trajectory solutions still follow the SHF structure but with different hovering locations. Finally, numerical results show that the proposed optimal trajectory designs achieve considerable rate gains over other benchmark schemes, and the capacity region achieved by NOMA significantly outperforms the rate regions by FDMA and TDMA.