Do you want to publish a course? Click here

Organic Thermoelectric Textiles for Harvesting Thermal Energy and Powering Electronics

156   0   0.0 ( 0 )
 Added by Kun Zhang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Wearable thermoelectric devices show promises to generate electricity in a ubiquitous, unintermittent and noiseless way for on-body applications. Three-dimensional thermoelectric textiles (TETs) outperform other types in smart textiles owing to their out-of-plane thermoelectric generation and good structural conformability with fabrics. Yet, there has been lack of efficient strategies in scalable manufacture of TETs for sustainably powering electronics. Here, we fabricate organic spacer fabric shaped TETs by knitting carbon nanotube yarn based segmented thermoelectric yarn in large scale. Combing finite element analysis with experimental evaluation, we elucidate that the fabric structure significantly influences the power generation. The optimally designed TET with good wearability and stability shows high output power density of 51.5 mW/m2 and high specific power of 173.3 uW/(g.K) at delta T= 47.5 K. The promising on-body applications of the TET in directly and continuously powering electronics for healthcare and environmental monitoring is fully demonstrated. This work will broaden the research vision and provide new routines for developing high-performance and large-scale TETs toward practical applications.



rate research

Read More

We report the design, elaboration and measurements of an innovative planar thermoelectric (TE) devices made of a large array of small mechanically suspended nanogenerators (nanoTEG). The miniaturized TE generators based on SiN membranes are arranged in series and/or in parallel depending on the expected final resistance adapted to the one of the load. The microstructuration allows, at the same time, a high thermal insulation of the membrane from the silicon frame and high thermal coupling to its environment (surrounding air, radiations). We show a ratio of 60% between the measured effective temperature of the membrane, (and hence of the TE junctions), and the available temperature of the heat source (air). The thermal gradient generated across the TE junction reaches a value as high as 60 kelvin per mm. Energy harvesting with this planar TE module is demonstrated through the collected voltage on the TE junctions when a temperature gradient is applied, showing a harvested power on the order of 0.3 $mu$Watt for a 1 cm 2 chip for an effective temperature gradient of 10 K. The optimization of nanoTEGs performances will increase the power harvested significantly and permit to send a signal by a regular communication protocol and feed basic functions like temperature measurement or airflow sensing.
Optical properties of core-shell-shell Au@SiO2@Au nanostructures and their solar energy harvesting applications are theoretically investigated using Mie theory and heat transfer equations. The theoretical analysis associated with size-dependent modification of the bulk gold dielectric function agrees well with previous experimental results. We use the appropriate absorption cross-section to determine the solar energy absorption efficiency of the nano-heterostructures, which is strongly structure-dependent, and to predict the time-dependent temperature increase of the nanoshell solution under simulated solar irradiation. Comparisons to prior temperature measurements and theoretical evaluation of the solar power conversion efficiency are discussed to provide new insights into underlying mechanisms. Our approach would accelerate materials and structure testing in solar energy harvesting.
The use of natural or bioinspired materials to develop edible electronic devices is a potentially disruptive technology that can boost point-of-care testing. The technology exploits devices which can be safely ingested, along with pills or even food, and operated from within the gastrointestinal tract. Ingestible electronics could potentially target a significant number of biomedical applications, both as therapeutic and diagnostic tool, and this technology may also impact the food industry, by providing ingestible or food-compatible electronic tags that can smart track goods and monitor their quality along the distribution chain. We hereby propose temporary tattoo-paper as a simple and versatile platform for the integration of electronics onto food and pharmaceutical capsules. In particular, we demonstrate the fabrication of all-printed Organic Field-Effect Transistors (OFETs) on untreated commercial tattoo-paper, and their subsequent transfer and operation on edible substrates with a complex non-planar geometry.
While solar power systems have offered a wide variety of electricity generation approaches including photovoltaics, solar thermal power systems, and solar thermoelectric generators, the ability of generating electricity at both the daytime and nighttime with no necessity of energy storage still remains challenging. Here, we propose and verify a strategy of harvesting solar energy by solar heating during the daytime and harnessing the coldness of the outer space through radiative cooling to produce electricity at night using a commercial thermoelectric module. It enables electricity generation for 24 hours a day. We experimentally demonstrate a peak power density of 37 mW/m2 at night and a peak value of 723 mW/m2 during the daytime. A theoretical model that accurately predicts the performance of the device is developed and validated. The feature of 24-hour electricity generation shows great potential energy applications of off-grid and battery-free lighting and sensing.
65 - X. Lan , Y. Wang , J. Peng 2021
Thermal comfort of textiles plays an indispensable role in the process of human civilization. Advanced textile for personal thermal management shapes body microclimates by merely regulating heat transfer between the skin and local ambient without wasting excess energy. Therefore, numerous efforts have recently been devoted to the development of advanced thermoregulatory textiles. In this review, we provide a unified perspective on those state-of-the-art efforts by emphasizing the design of diverse heat transfer pathways. We focus on engineering certain physical quantities to tailor the heat transfer pathways, such as thermal emittance/absorptance, reflectance and transmittance in near-infrared and mid-infrared radiation, as well as thermal conductance in conduction. Tuning those heat transfer pathways can achieve different functionalities for personal thermal management, such as passive cooling, warming, or even dual-mode (cooling-warming), either static switching or dynamic adapting. Finally, we point out the challenges and opportunities in this emerging field, including but not limited to the impact of evaporation and convection with missing blocks of heat pathways, the bio-inspired and artificial-intelligence-guided design of advanced functional textiles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا