No Arabic abstract
Thermal comfort of textiles plays an indispensable role in the process of human civilization. Advanced textile for personal thermal management shapes body microclimates by merely regulating heat transfer between the skin and local ambient without wasting excess energy. Therefore, numerous efforts have recently been devoted to the development of advanced thermoregulatory textiles. In this review, we provide a unified perspective on those state-of-the-art efforts by emphasizing the design of diverse heat transfer pathways. We focus on engineering certain physical quantities to tailor the heat transfer pathways, such as thermal emittance/absorptance, reflectance and transmittance in near-infrared and mid-infrared radiation, as well as thermal conductance in conduction. Tuning those heat transfer pathways can achieve different functionalities for personal thermal management, such as passive cooling, warming, or even dual-mode (cooling-warming), either static switching or dynamic adapting. Finally, we point out the challenges and opportunities in this emerging field, including but not limited to the impact of evaporation and convection with missing blocks of heat pathways, the bio-inspired and artificial-intelligence-guided design of advanced functional textiles.
Designing nonvolatile multi-level resistive devices is the necessity of time to go beyond traditional one-bit storage systems, thus enhancing the storage density. Here, we explore the electronic phase competition scenario to design multi-level resistance states using a half doped CE-type charge ordered insulating bulk manganite, $Sm_{0.5}Ca_{0.25}Sr_{0.25}MnO_3$ (SCSMO). By introducing electronic phase coexistence in a controllable manner in SCSMO, we show that the system can be stabilized into several metastable states, against thermal cycling, up to 62 K. As a result the magnetization (and the resistivity) remains unaltered during the thermal cycling. Monte Carlo calculations using two-band double exchange model, including super-exchange, electron-phonon coupling, and quenched disorder, show that the system freezes into a phase coexistence metastable state during the thermal cycling due to the chemical disorder in SCSMO. Using the obtained insights we outline a pathway by utilizing four reversible metastable resistance states to design a prototype multi-bit memory device.
Wearable thermoelectric devices show promises to generate electricity in a ubiquitous, unintermittent and noiseless way for on-body applications. Three-dimensional thermoelectric textiles (TETs) outperform other types in smart textiles owing to their out-of-plane thermoelectric generation and good structural conformability with fabrics. Yet, there has been lack of efficient strategies in scalable manufacture of TETs for sustainably powering electronics. Here, we fabricate organic spacer fabric shaped TETs by knitting carbon nanotube yarn based segmented thermoelectric yarn in large scale. Combing finite element analysis with experimental evaluation, we elucidate that the fabric structure significantly influences the power generation. The optimally designed TET with good wearability and stability shows high output power density of 51.5 mW/m2 and high specific power of 173.3 uW/(g.K) at delta T= 47.5 K. The promising on-body applications of the TET in directly and continuously powering electronics for healthcare and environmental monitoring is fully demonstrated. This work will broaden the research vision and provide new routines for developing high-performance and large-scale TETs toward practical applications.
That one can stack van der Waals materials with atomically sharp interfaces has provided a new material platform of constructing heterostructures. The technical challenge of mechanical stacking is picking up the exfoliated atomically thin materials after mechanical exfoliation without chemical and mechanical degradation. Chemically inert hexagonal boron nitride (hBN) has been widely used for encapsulating and picking up vdW materials. However, due to the relatively weak adhesion of hBN, assembling vdW heterostructures based on hBN has been limited. We report a new dry transfer technique. We used two vdW semiconductors (ZnPS3 and CrPS4) to pick up and encapsulate layers for vdW heterostructures, which otherwise are known to be hard to fabricate. By combining with optimized polycaprolactone (PCL) providing strong adhesion, we demonstrated various vertical heterostructure devices, including quasi-2D superconducting NbSe2 Josephson junctions with atomically clean interface. The versatility of the PCL-based vdW stacking method provides a new route for assembling complex 2D vdW materials without interfacial degradation.
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed byHalevi and Fuchs. This theory has the advantage to includedifferent models performed in the literature. According to this theory, the nonlocal dielectric function is described by a Lorenz-Drude like single oscillator model, in which the spatial dispersion effects are represented by an additional term depending on the square of the total wavevector k. The theory takes into account the scattering of the electromagneticexcitation at the surface of the dielectric material, which leads to the need of additional boundary conditions in order to solve Maxwells equations and treat the electromagnetic transmission problem. The additional boundary conditions appear as additional surface scattering parameters in the expressions of the surface impedances. It is shown that the nonlocal modeling deviates from the classical $1/d^2$ law in the nanometerrangeat distances still larger than the ones where quantum effects are expected to come into play.
We developed a capacitor type heat flow switching device, in which electron thermal conductivity of the electrodes is actively controlled through the carrier concentration varied by an applied bias voltage. The devices consist of an amorphous p-type Si-Ge-Au alloy layer, an amorphous SiO$_2$ as the dielectric layer, and a n-type Si substrate. Both amorphous materials are characterized by very low lattice thermal conductivity, less than 1 Wm-1K-1. The Si-Ge-Au amorphous layer with 40 nm in thickness was deposited by means of molecular beam deposition technique on the 100 nm thick SiO$_2$ layer formed at the top surface of Si substrate. Bias voltage-dependent thermal conductivity and heat flow density of the fabricated device were evaluated by a time-domain thermoreflectance method at room temperature. Consequently, we observed a 55 percent increase in thermal conductivity.