No Arabic abstract
Popular QA benchmarks like SQuAD have driven progress on the task of identifying answer spans within a specific passage, with models now surpassing human performance. However, retrieving relevant answers from a huge corpus of documents is still a challenging problem, and places different requirements on the model architecture. There is growing interest in developing scalable answer retrieval models trained end-to-end, bypassing the typical document retrieval step. In this paper, we introduce Retrieval Question-Answering (ReQA), a benchmark for evaluating large-scale sentence-level answer retrieval models. We establish baselines using both neural encoding models as well as classical information retrieval techniques. We release our evaluation code to encourage further work on this challenging task.
We present the first end-to-end, transformer-based table question answering (QA) system that takes natural language questions and massive table corpus as inputs to retrieve the most relevant tables and locate the correct table cells to answer the question. Our system, CLTR, extends the current state-of-the-art QA over tables model to build an end-to-end table QA architecture. This system has successfully tackled many real-world table QA problems with a simple, unified pipeline. Our proposed system can also generate a heatmap of candidate columns and rows over complex tables and allow users to quickly identify the correct cells to answer questions. In addition, we introduce two new open-domain benchmarks, E2E_WTQ and E2E_GNQ, consisting of 2,005 natural language questions over 76,242 tables. The benchmarks are designed to validate CLTR as well as accommodate future table retrieval and end-to-end table QA research and experiments. Our experiments demonstrate that our system is the current state-of-the-art model on the table retrieval task and produces promising results for end-to-end table QA.
This paper presents an end-to-end response selection model for Track 1 of the 7th Dialogue System Technology Challenges (DSTC7). This task focuses on selecting the correct next utterance from a set of candidates given a partial conversation. We propose an end-to-end neural network based on enhanced sequential inference model (ESIM) for this task. Our proposed model differs from the original ESIM model in the following four aspects. First, a new word representation method which combines the general pre-trained word embeddings with those estimated on the task-specific training set is adopted in order to address the challenge of out-of-vocabulary (OOV) words. Second, an attentive hierarchical recurrent encoder (AHRE) is designed which is capable to encode sentences hierarchically and generate more descriptive representations by aggregation. Third, a new pooling method which combines multi-dimensional pooling and last-state pooling is used instead of the simple combination of max pooling and average pooling in the original ESIM. Last, a modification layer is added before the softmax layer to emphasize the importance of the last utterance in the context for response selection. In the released evaluation results of DSTC7, our proposed method ranked second on the Ubuntu dataset and third on the Advising dataset in subtask 1 of Track 1.
Building ASR models across many languages is a challenging multi-task learning problem due to large variations and heavily unbalanced data. Existing work has shown positive transfer from high resource to low resource languages. However, degradations on high resource languages are commonly observed due to interference from the heterogeneous multilingual data and reduction in per-language capacity. We conduct a capacity study on a 15-language task, with the amount of data per language varying from 7.6K to 53.5K hours. We adopt GShard [1] to efficiently scale up to 10B parameters. Empirically, we find that (1) scaling the number of model parameters is an effective way to solve the capacity bottleneck - our 500M-param model already outperforms monolingual baselines and scaling it to 1B and 10B brought further quality gains; (2) larger models are not only more data efficient, but also more efficient in terms of training cost as measured in TPU days - the 1B-param model reaches the same accuracy at 34% of training time as the 500M-param model; (3) given a fixed capacity budget, adding depth works better than width and large encoders do better than large decoders; (4) with continuous training, they can be adapted to new languages and domains.
The task of Emotion-Cause Pair Extraction (ECPE) aims to extract all potential clause-pairs of emotions and their corresponding causes in a document. Unlike the more well-studied task of Emotion Cause Extraction (ECE), ECPE does not require the emotion clauses to be provided as annotations. Previous works on ECPE have either followed a multi-stage approach where emotion extraction, cause extraction, and pairing are done independently or use complex architectures to resolve its limitations. In this paper, we propose an end-to-end model for the ECPE task. Due to the unavailability of an English language ECPE corpus, we adapt the NTCIR-13 ECE corpus and establish a baseline for the ECPE task on this dataset. On this dataset, the proposed method produces significant performance improvements (~6.5 increase in F1 score) over the multi-stage approach and achieves comparable performance to the state-of-the-art methods.
End-to-end approaches for sequence tasks are becoming increasingly popular. Yet for complex sequence tasks, like speech translation, systems that cascade several models trained on sub-tasks have shown to be superior, suggesting that the compositionality of cascaded systems simplifies learning and enables sophisticated search capabilities. In this work, we present an end-to-end framework that exploits compositionality to learn searchable hidden representations at intermediate stages of a sequence model using decomposed sub-tasks. These hidden intermediates can be improved using beam search to enhance the overall performance and can also incorporate external models at intermediate stages of the network to re-score or adapt towards out-of-domain data. One instance of the proposed framework is a Multi-Decoder model for speech translation that extracts the searchable hidden intermediates from a speech recognition sub-task. The model demonstrates the aforementioned benefits and outperforms the previous state-of-the-art by around +6 and +3 BLEU on the two test sets of Fisher-CallHome and by around +3 and +4 BLEU on the English-German and English-French test sets of MuST-C.