No Arabic abstract
Accretion disks around supermassive black holes are promising sites for stellar mass black hole mergers detectable with LIGO. Here we present the results of Monte-Carlo simulations of black hole mergers within 1-d AGN disk models. For the spin distribution in the disk bulk, key findings are: (1) The distribution of $chi_{rm eff}$ is naturally centered around $tilde{chi}_{rm eff} approx 0.0$, (2) the width of the $chi_{rm eff}$ distribution is narrow for low natal spins. For the mass distribution in the disk bulk, key findings are: (3) mass ratios $tilde{q} sim 0.5-0.7$, (4) the maximum merger mass in the bulk is $sim 100-200M_{odot}$, (5) $sim 1%$ of bulk mergers involve BH $>50M_{odot}$ with (6) $simeq 80%$ of bulk mergers are pairs of 1st generation BH. Additionally, mergers at a migration trap grow an IMBH with typical merger mass ratios $tilde{q}sim 0.1$. Ongoing LIGO non-detections of black holes $>10^{2}M_{odot}$ puts strong limits on the presence of migration traps in AGN disks (and therefore AGN disk density and structure) as well as median AGN disk lifetime. The highest merger rate occurs for this channel if AGN disks are relatively short-lived ($leq 1$Myr) so multiple AGN episodes can happen per Galactic nucleus in a Hubble time.
Using the Binary Population and Spectral Synthesis code BPASS, we have calculated the rates, timescales and mass distributions for binary black hole mergers as a function of metallicity. We consider these in the context of the recently reported 1st LIGO event detection. We find that the event has a very low probability of arising from a stellar population with initial metallicity mass fraction above Z=0.010 (Z>0.5Zsun). Binary black hole merger events with the reported masses are most likely in populations below 0.008 (Z<0.4Zsun). Events of this kind can occur at all stellar population ages from ~3 Myr up to the age of the universe, but constitute only 0.1 to 0.4 per cent of binary BH mergers between metallicities of Z=0.001 to 0.008. However at metallicity Z=0.0001, 26 per cent of binary BH mergers would be expected to have the reported masses. At this metallicity the progenitor merger times can be close to ~10Gyr and rotationally-mixed stars evolving through quasi-homogeneous evolution, due to mass transfer in a binary, dominate the rate. The masses inferred for the black holes in the binary progenitor of GW,150914 are amongst the most massive expected at anything but the lowest metallicities in our models. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.
The first and second Gravitational Wave Transient Catalogs by the LIGO/Virgo Collaboration include $50$ confirmed merger events from the first, second, and first half of the third observational runs. We compute the distribution of recoil kicks imparted to the merger remnants and estimate their retention probability within various astrophysical environments as a function of the maximum progenitor spin ($chi_{rm max}$), assuming that the LIGO/Virgo binary black hole (BBH) mergers were catalyzed by dynamical assembly in a dense star cluster. We find that the distributions of average recoil kicks are peaked at about $150$ km s$^{-1}$, $250$ km s$^{-1}$, $350$ km s$^{-1}$, $600$ km s$^{-1}$, for maximum progenitor spins of $0.1$, $0.3$, $0.5$, $0.8$, respectively. Only environments with escape speed $gtrsim 100$ km s$^{-1}$, as found in galactic nuclear star clusters as well as in the most massive globular clusters and super star clusters, could efficiently retain the merger remnants of the LIGO/Virgo BBH population even for low progenitor spins ($chi_{rm max}=0.1$). In the case of high progenitor spins ($chi_{rm max}gtrsim 0.5$), only the most massive nuclear star clusters can retain the merger products. We also show that the estimated values of the effective spin and of the remnant spin of GW170729, GW190412, GW190519, and GW190620 can be reproduced if their progenitors were moderately spinning ($chi_{rm max}gtrsim 0.3$), while for GW190517 if the progenitors were rapidly spinning ($chi_{rm max}gtrsim 0.8$). Alternatively, some of these events could be explained if at least one of the progenitors is already a second-generation BH, originated from a previous merger.
The dynamical formation of stellar-mass black hole-black hole binaries has long been a promising source of gravitational waves for the Laser Interferometer Gravitational-Wave Observatory (LIGO). Mass segregation, gravitational focusing, and multibody dynamical interactions naturally increase the interaction rate between the most massive black holes in dense stellar systems, eventually leading them to merge. We find that dynamical interactions, particularly three-body binary formation, enhance the merger rate of black hole binaries with total mass M_tot roughly as ~M_tot^beta, with beta >~ 4. We find that this relation holds mostly independently of the initial mass function, but the exact value depends on the degree of mass segregation. The detection rate of such massive black hole binaries is only further enhanced by LIGOs greater sensitivity to massive black hole binaries with M_tot <~ 80 solar masses. We find that for power-law BH mass functions dN/dM ~ M^-alpha with alpha <~ 2, LIGO is most likely to detect black hole binaries with a mass twice that of the maximum initial black hole mass and a mass ratio near one. Repeated mergers of black holes inside the cluster result in about ~5% of mergers being observed between two and three times the maximum initial black hole mass. Using these relations, one may be able to invert the observed distribution to the initial mass function with multiple detections of merging black hole binaries.
We study the evolution of the binary black hole (BBH) mass distribution across cosmic time. The second gravitational-wave transient catalog (GWTC-2) from LIGO/Virgo contains BBH events out to redshifts $z sim 1$, with component masses in the range $sim5$--$80,M_odot$. In this catalog, the biggest black holes, with $m_1 gtrsim 45,M_odot$, are only found at the highest redshifts, $z gtrsim 0.4$. We ask whether the absence of high-mass BBH observations at low redshift indicates that the astrophysical BBH mass distribution evolves: the biggest BBHs only merge at high redshift, and cease merging at low redshift. Alternatively, this feature might be explained by gravitational-wave selection effects. Modeling the BBH primary mass spectrum as a power law with a sharp maximum mass cutoff (Truncated model), we find that the cutoff increases with redshift ($> 99.9%$ credibility). An abrupt cutoff in the mass spectrum is expected from (pulsational) pair instability supernova simulations; however, GWTC-2 is only consistent with a Truncated mass model if the location of the cutoff increases from $45^{+13}_{-5},M_odot$ at $z < 0.4$ to $80^{+16}_{-13},M_odot$ at $z > 0.4$. Alternatively, if the primary mass spectrum has a break in the power law (Broken power law) at ${38^{+15}_{-8},M_odot}$, rather than a sharp cutoff, the data are consistent with a non-evolving mass distribution. In this case, the overall rate of mergers, at all masses, increases with increasing redshift. Future observations will confidently distinguish between a sharp maximum mass cutoff that evolves with redshift and a non-evolving mass distribution with a gradual taper, such as a Broken power law. After $sim 100$ BBH merger observations, a continued absence of high-mass, low-redshift events would provide a clear signature that the mass distribution evolves with redshift.
The astrophysical origin of gravitational wave (GW) transients is a timely open question in the wake of discoveries by LIGO/Virgo. In active galactic nuclei (AGNs), binaries form and evolve efficiently by interaction with a dense population of stars and the gaseous AGN disk. Previous studies have shown that stellar-mass black hole (BH) mergers in such environments can explain the merger rate and the number of suspected hierarchical mergers observed by LIGO/Virgo. The binary eccentricity distribution can provide further information to distinguish between astrophysical models. Here we derive the eccentricity distribution of BH mergers in AGN disks. We find that eccentricity is mainly due to binary-single (BS) interactions, which lead to most BH mergers in AGN disks having a significant eccentricity at $0.01,mathrm{Hz}$, detectable by LISA. If BS interactions occur in isotropic-3D directions, then $8$--$30%$ of the mergers in AGN disks will have eccentricities at $10,mathrm{Hz}$ above $e_{10,rm Hz}gtrsim 0.03$, detectable by LIGO/Virgo/KAGRA, while $5$--$17%$ of mergers have $e_{10,rm Hz}geq 0.3$. On the other hand, if BS interactions are confined to the AGN-disk plane due to torques from the disk, with 1-20 intermediate binary states during each interaction, or if BHs can migrate to $lesssim10^{-3},mathrm{pc}$ from the central supermassive black hole, then $10$--$70%$ of the mergers will be highly eccentric ($e_{10,rm Hz} geq 0.3$), consistent with the possible high eccentricity in GW190521.