Do you want to publish a course? Click here

Learning a Behavioral Repertoire from Demonstrations

117   0   0.0 ( 0 )
 Added by Niels Justesen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Imitation Learning (IL) is a machine learning approach to learn a policy from a dataset of demonstrations. IL can be useful to kick-start learning before applying reinforcement learning (RL) but it can also be useful on its own, e.g. to learn to imitate human players in video games. However, a major limitation of current IL approaches is that they learn only a single average policy based on a dataset that possibly contains demonstrations of numerous different types of behaviors. In this paper, we propose a new approach called Behavioral Repertoire Imitation Learning (BRIL) that instead learns a repertoire of behaviors from a set of demonstrations by augmenting the state-action pairs with behavioral descriptions. The outcome of this approach is a single neural network policy conditioned on a behavior description that can be precisely modulated. We apply this approach to train a policy on 7,777 human replays to perform build-order planning in StarCraft II. Principal Component Analysis (PCA) is applied to construct a low-dimensional behavioral space from the high-dimensional army unit composition of each demonstration. The results demonstrate that the learned policy can be effectively manipulated to express distinct behaviors. Additionally, by applying the UCB1 algorithm, we are able to adapt the behavior of the policy - in-between games - to reach a performance beyond that of the traditional IL baseline approach.

rate research

Read More

Behavior cloning (BC) is often practical for robot learning because it allows a policy to be trained offline without rewards, by supervised learning on expert demonstrations. However, BC does not effectively leverage what we will refer to as unlabeled experience: data of mixed and unknown quality without reward annotations. This unlabeled data can be generated by a variety of sources such as human teleoperation, scripted policies and other agents on the same robot. Towards data-driven offline robot learning that can use this unlabeled experience, we introduce Offline Reinforced Imitation Learning (ORIL). ORIL first learns a reward function by contrasting observations from demonstrator and unlabeled trajectories, then annotates all data with the learned reward, and finally trains an agent via offline reinforcement learning. Across a diverse set of continuous control and simulated robotic manipulation tasks, we show that ORIL consistently outperforms comparable BC agents by effectively leveraging unlabeled experience.
103 - Siqing Hou , Dongqi Han , Jun Tani 2021
Efficient exploration has presented a long-standing challenge in reinforcement learning, especially when rewards are sparse. A developmental system can overcome this difficulty by learning from both demonstrations and self-exploration. However, existing methods are not applicable to most real-world robotic controlling problems because they assume that environments follow Markov decision processes (MDP); thus, they do not extend to partially observable environments where historical observations are necessary for decision making. This paper builds on the idea of replaying demonstrations for memory-dependent continuous control, by proposing a novel algorithm, Recurrent Actor-Critic with Demonstration and Experience Replay (READER). Experiments involving several memory-crucial continuous control tasks reveal significantly reduce interactions with the environment using our method with a reasonably small number of demonstration samples. The algorithm also shows better sample efficiency and learning capabilities than a baseline reinforcement learning algorithm for memory-based control from demonstrations.
Model-free deep reinforcement learning (RL) has demonstrated its superiority on many complex sequential decision-making problems. However, heavy dependence on dense rewards and high sample-complexity impedes the wide adoption of these methods in real-world scenarios. On the other hand, imitation learning (IL) learns effectively in sparse-rewarded tasks by leveraging the existing expert demonstrations. In practice, collecting a sufficient amount of expert demonstrations can be prohibitively expensive, and the quality of demonstrations typically limits the performance of the learning policy. In this work, we propose Self-Adaptive Imitation Learning (SAIL) that can achieve (near) optimal performance given only a limited number of sub-optimal demonstrations for highly challenging sparse reward tasks. SAIL bridges the advantages of IL and RL to reduce the sample complexity substantially, by effectively exploiting sup-optimal demonstrations and efficiently exploring the environment to surpass the demonstrated performance. Extensive empirical results show that not only does SAIL significantly improve the sample-efficiency but also leads to much better final performance across different continuous control tasks, comparing to the state-of-the-art.
In this paper, we study Reinforcement Learning from Demonstrations (RLfD) that improves the exploration efficiency of Reinforcement Learning (RL) by providing expert demonstrations. Most of existing RLfD methods require demonstrations to be perfect and sufficient, which yet is unrealistic to meet in practice. To work on imperfect demonstrations, we first define an imperfect expert setting for RLfD in a formal way, and then point out that previous methods suffer from two issues in terms of optimality and convergence, respectively. Upon the theoretical findings we have derived, we tackle these two issues by regarding the expert guidance as a soft constraint on regulating the policy exploration of the agent, which eventually leads to a constrained optimization problem. We further demonstrate that such problem is able to be addressed efficiently by performing a local linear search on its dual form. Considerable empirical evaluations on a comprehensive collection of benchmarks indicate our method attains consistent improvement over other RLfD counterparts.
Imitation learning allows agents to learn complex behaviors from demonstrations. However, learning a complex vision-based task may require an impractical number of demonstrations. Meta-imitation learning is a promising approach towards enabling agents to learn a new task from one or a few demonstrations by leveraging experience from learning similar tasks. In the presence of task ambiguity or unobserved dynamics, demonstrations alone may not provide enough information; an agent must also try the task to successfully infer a policy. In this work, we propose a method that can learn to learn from both demonstrations and trial-and-error experience with sparse reward feedback. In comparison to meta-imitation, this approach enables the agent to effectively and efficiently improve itself autonomously beyond the demonstration data. In comparison to meta-reinforcement learning, we can scale to substantially broader distributions of tasks, as the demonstration reduces the burden of exploration. Our experiments show that our method significantly outperforms prior approaches on a set of challenging, vision-based control tasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا