No Arabic abstract
Imitation learning allows agents to learn complex behaviors from demonstrations. However, learning a complex vision-based task may require an impractical number of demonstrations. Meta-imitation learning is a promising approach towards enabling agents to learn a new task from one or a few demonstrations by leveraging experience from learning similar tasks. In the presence of task ambiguity or unobserved dynamics, demonstrations alone may not provide enough information; an agent must also try the task to successfully infer a policy. In this work, we propose a method that can learn to learn from both demonstrations and trial-and-error experience with sparse reward feedback. In comparison to meta-imitation, this approach enables the agent to effectively and efficiently improve itself autonomously beyond the demonstration data. In comparison to meta-reinforcement learning, we can scale to substantially broader distributions of tasks, as the demonstration reduces the burden of exploration. Our experiments show that our method significantly outperforms prior approaches on a set of challenging, vision-based control tasks.
Humans effortlessly program one another by communicating goals and desires in natural language. In contrast, humans program robotic behaviours by indicating desired object locations and poses to be achieved, by providing RGB images of goal configurations, or supplying a demonstration to be imitated. None of these methods generalize across environment variations, and they convey the goal in awkward technical terms. This work proposes joint learning of natural language grounding and instructable behavioural policies reinforced by perceptual detectors of natural language expressions, grounded to the sensory inputs of the robotic agent. Our supervision is narrated visual demonstrations(NVD), which are visual demonstrations paired with verbal narration (as opposed to being silent). We introduce a dataset of NVD where teachers perform activities while describing them in detail. We map the teachers descriptions to perceptual reward detectors, and use them to train corresponding behavioural policies in simulation.We empirically show that our instructable agents (i) learn visual reward detectors using a small number of examples by exploiting hard negative mined configurations from demonstration dynamics, (ii) develop pick-and place policies using learned visual reward detectors, (iii) benefit from object-factorized state representations that mimic the syntactic structure of natural language goal expressions, and (iv) can execute behaviours that involve novel objects in novel locations at test time, instructed by natural language.
Behavior cloning (BC) is often practical for robot learning because it allows a policy to be trained offline without rewards, by supervised learning on expert demonstrations. However, BC does not effectively leverage what we will refer to as unlabeled experience: data of mixed and unknown quality without reward annotations. This unlabeled data can be generated by a variety of sources such as human teleoperation, scripted policies and other agents on the same robot. Towards data-driven offline robot learning that can use this unlabeled experience, we introduce Offline Reinforced Imitation Learning (ORIL). ORIL first learns a reward function by contrasting observations from demonstrator and unlabeled trajectories, then annotates all data with the learned reward, and finally trains an agent via offline reinforcement learning. Across a diverse set of continuous control and simulated robotic manipulation tasks, we show that ORIL consistently outperforms comparable BC agents by effectively leveraging unlabeled experience.
Our goal is to accurately and efficiently learn reward functions for autonomous robots. Current approaches to this problem include inverse reinforcement learning (IRL), which uses expert demonstrations, and preference-based learning, which iteratively queries the user for her preferences between trajectories. In robotics however, IRL often struggles because it is difficult to get high-quality demonstrations; conversely, preference-based learning is very inefficient since it attempts to learn a continuous, high-dimensional function from binary feedback. We propose a new framework for reward learning, DemPref, that uses both demonstrations and preference queries to learn a reward function. Specifically, we (1) use the demonstrations to learn a coarse prior over the space of reward functions, to reduce the effective size of the space from which queries are generated; and (2) use the demonstrations to ground the (active) query generation process, to improve the quality of the generated queries. Our method alleviates the efficiency issues faced by standard preference-based learning methods and does not exclusively depend on (possibly low-quality) demonstrations. In numerical experiments, we find that DemPref is significantly more efficient than a standard active preference-based learning method. In a user study, we compare our method to a standard IRL method; we find that users rated the robot trained with DemPref as being more successful at learning their desired behavior, and preferred to use the DemPref system (over IRL) to train the robot.
Imitation Learning (IL) is a machine learning approach to learn a policy from a dataset of demonstrations. IL can be useful to kick-start learning before applying reinforcement learning (RL) but it can also be useful on its own, e.g. to learn to imitate human players in video games. However, a major limitation of current IL approaches is that they learn only a single average policy based on a dataset that possibly contains demonstrations of numerous different types of behaviors. In this paper, we propose a new approach called Behavioral Repertoire Imitation Learning (BRIL) that instead learns a repertoire of behaviors from a set of demonstrations by augmenting the state-action pairs with behavioral descriptions. The outcome of this approach is a single neural network policy conditioned on a behavior description that can be precisely modulated. We apply this approach to train a policy on 7,777 human replays to perform build-order planning in StarCraft II. Principal Component Analysis (PCA) is applied to construct a low-dimensional behavioral space from the high-dimensional army unit composition of each demonstration. The results demonstrate that the learned policy can be effectively manipulated to express distinct behaviors. Additionally, by applying the UCB1 algorithm, we are able to adapt the behavior of the policy - in-between games - to reach a performance beyond that of the traditional IL baseline approach.
In recent years deep reinforcement learning (RL) systems have attained superhuman performance in a number of challenging task domains. However, a major limitation of such applications is their demand for massive amounts of training data. A critical present objective is thus to develop deep RL methods that can adapt rapidly to new tasks. In the present work we introduce a novel approach to this challenge, which we refer to as deep meta-reinforcement learning. Previous work has shown that recurrent networks can support meta-learning in a fully supervised context. We extend this approach to the RL setting. What emerges is a system that is trained using one RL algorithm, but whose recurrent dynamics implement a second, quite separate RL procedure. This second, learned RL algorithm can differ from the original one in arbitrary ways. Importantly, because it is learned, it is configured to exploit structure in the training domain. We unpack these points in a series of seven proof-of-concept experiments, each of which examines a key aspect of deep meta-RL. We consider prospects for extending and scaling up the approach, and also point out some potentially important implications for neuroscience.