Do you want to publish a course? Click here

Random product of quasi-periodic cocycles

124   0   0.0 ( 0 )
 Added by Mauricio Poletti
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Given a finite set of quasi-periodic cocycles the random product of them is defined as the random composition according to some probability measure. We prove that the set of $C^r$, $0leq r leq infty$ (or analytic) $k+1$-tuples of quasi periodic cocycles taking values in $SL_2(mathbb{R})$ such that the random product of them has positive Lyapunov exponent contains a $C^0$ open and $C^r$ dense subset which is formed by $C^0$ continuity point of the Lyapunov exponent For $k+1$-tuples of quasi periodic cocycles taking values in $GL_d(mathbb{R})$ for $d>2$, we prove that if one of them is diagonal, then there exists a $C^r$ dense set of such $k+1$-tuples which has simples Lyapunov spectrum and are $C^0$ continuity point of the Lyapunov exponent.



rate research

Read More

The KAM (Kolmogorov-Arnold-Moser) theorem guarantees the stability of quasi-periodic invariant tori by perturbation in some Hamiltonian systems. Michel Herman proved a similar result for quasi-periodic motions, with $k$-dimensional involutive manifolds in Hamiltonian systems with $n$ degrees of freedom $n leq k < 2n $. In this paper, we extend this result to the case of a quasi-periodic motion on symplectic tori $k = 2n$.
Quasi-periodic solutions with Liouvillean frequency of forced nonlinear Schrodinger equation are constructed. This is based on an infinite dimensional KAM theory for Liouvillean frequency.
We extend to positive real weights Haberlands formula giving a cohomological description of the Petersson scalar product of modular cusp forms of positive even weight. This relation is based on the cup product of an Eichler cocycle and a Knopp cocycle. We also consider the cup product of two Eichler cocycles attached to modular forms. In the classical context of integral weights at least $2$ this cup product is uninteresting. We show evidence that for real weights this cup product may very well be non-trivial. We approach the question whether the cup product is a non-trivial coinvariant by duality with a space of entire modular forms. Under suitable conditions on the weights this leads to an explicit triple integral involving three modular forms. We use this representation to study the cup product numerically.
For non-critical almost Mathieu operators with Diophantine frequency, we establish exponential asymptotics on the size of spectral gaps, and show that the spectrum is homogeneous. We also prove the homogeneity of the spectrum for Schodinger operators with (measure-theoretically) typical quasi-periodic analytic potentials and fixed strong Diophantine frequency. As applications, we show the discrete version of Deifts conjecture cite{Deift, Deift17} for subcritical analytic quasi-periodic initial data and solve a series of open problems of Damanik-Goldstein et al cite{BDGL, DGL1, dgsv, Go} and Kotani cite{Kot97}.
Any infinite sequence of substitutions with the same matrix of the Pisot type defines a symbolic dynamical system which is minimal. We prove that, to any such sequence, we can associate a compact set (Rauzy fractal) by projection of the stepped line associated with an element of the symbolic system on the contracting space of the matrix. We show that this Rauzy fractal depends continuously on the sequence of substitutions, and investigate some of its properties; in some cases, this construction gives a geometric model for the symbolic dynamical system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا