No Arabic abstract
Private Information Retrieval (PIR) problem has recently attracted a significant interest in the information-theory community. In this problem, a user wants to privately download one or more messages belonging to a database with copies stored on a single or multiple remote servers. In the single server scenario, the user must have prior side information, i.e., a subset of messages unknown to the server, to be able to privately retrieve the required messages in an efficient way. In the last decade, there has also been a significant interest in Locally Recoverable Codes (LRC), a class of storage codes in which each symbol can be recovered from a limited number of other symbols. More recently, there is an interest in cooperative locally recoverable codes, i.e., codes in which multiple symbols can be recovered from a small set of other code symbols. In this paper, we establish a relationship between coding schemes for the single-server PIR problem and LRCs. In particular, we show the following results: (i) PIR schemes designed for retrieving a single message are equivalent to classical LRCs; and (ii) PIR schemes for retrieving multiple messages are equivalent to cooperative LRCs. These equivalence results allow us to recover upper bounds on the download rate for PIR-SI schemes, and to obtain a novel rate upper bound on cooperative LRCs. We show results for both linear and non-linear codes.
In (single-server) Private Information Retrieval (PIR), a server holds a large database $DB$ of size $n$, and a client holds an index $i in [n]$ and wishes to retrieve $DB[i]$ without revealing $i$ to the server. It is well known that information theoretic privacy even against an `honest but curious server requires $Omega(n)$ communication complexity. This is true even if quantum communication is allowed and is due to the ability of such an adversarial server to execute the protocol on a superposition of databases instead of on a specific database (`input purification attack). Nevertheless, there have been some proposals of protocols that achieve sub-linear communication and appear to provide some notion of privacy. Most notably, a protocol due to Le Gall (ToC 2012) with communication complexity $O(sqrt{n})$, and a protocol by Kerenidis et al. (QIC 2016) with communication complexity $O(log(n))$, and $O(n)$ shared entanglement. We show that, in a sense, input purification is the only potent adversarial strategy, and protocols such as the two protocols above are secure in a restricted variant of the quantum honest but curious (a.k.a specious) model. More explicitly, we propose a restricted privacy notion called emph{anchored privacy}, where the adversary is forced to execute on a classical database (i.e. the execution is anchored to a classical database). We show that for measurement-free protocols, anchored security against honest adversarial servers implies anchored privacy even against specious adversaries. Finally, we prove that even with (unlimited) pre-shared entanglement it is impossible to achieve security in the standard specious model with sub-linear communication, thus further substantiating the necessity of our relaxation. This lower bound may be of independent interest (in particular recalling that PIR is a special case of Fully Homomorphic Encryption).
Recently, it was discovered by several authors that a $q$-ary optimal locally recoverable code, i.e., a locally recoverable code archiving the Singleton-type bound, can have length much bigger than $q+1$. This is quite different from the classical $q$-ary MDS codes where it is conjectured that the code length is upper bounded by $q+1$ (or $q+2$ for some special case). This discovery inspired some recent studies on length of an optimal locally recoverable code. It was shown in cite{LXY} that a $q$-ary optimal locally recoverable code is unbounded for $d=3,4$. Soon after, it was proved that a $q$-ary optimal locally recoverable code with distance $d$ and locality $r$ can have length $Omega_{d,r}(q^{1 + 1/lfloor(d-3)/2rfloor})$. Recently, an explicit construction of $q$-ary optimal locally recoverable codes for distance $d=5,6$ was given in cite{J18} and cite{BCGLP}. In this paper, we further investigate construction optimal locally recoverable codes along the line of using parity-check matrices. Inspired by classical Reed-Solomon codes and cite{J18}, we equip parity-check matrices with the Vandermond structure. It is turns out that a parity-check matrix with the Vandermond structure produces an optimal locally recoverable code must obey certain disjoint property for subsets of $mathbb{F}_q$. To our surprise, this disjoint condition is equivalent to a well-studied problem in extremal graph theory. With the help of extremal graph theory, we succeed to improve all of the best known results in cite{GXY} for $dgeq 7$. In addition, for $d=6$, we are able to remove the constraint required in cite{J18} that $q$ is even.
Locally recoverable (LRC) codes have recently been a focus point of research in coding theory due to their theoretical appeal and applications in distributed storage systems. In an LRC code, any erased symbol of a codeword can be recovered by accessing only a small number of other symbols. For LRC codes over a small alphabet (such as binary), the optimal rate-distance trade-off is unknown. We present several new combinatorial bounds on LRC codes including the locality-aware sphere packing and Plotkin bounds. We also develop an approach to linear programming (LP) bounds on LRC codes. The resulting LP bound gives better estimates in examples than the other upper bounds known in the literature. Further, we provide the tightest known upper bound on the rate of linear LRC codes with a given relative distance, an improvement over the previous best known bounds.
Motivated by applications in distributed storage, the notion of a locally recoverable code (LRC) was introduced a few years back. In an LRC, any coordinate of a codeword is recoverable by accessing only a small number of other coordinates. While different properties of LRCs have been well-studied, their performance on channels with random erasures or errors has been mostly unexplored. In this note, we analyze the performance of LRCs over such stochastic channels. In particular, for input-symmetric discrete memoryless channels, we give a tight characterization of the gap to Shannon capacity when LRCs are used over the channel.
A locally recoverable code is an error-correcting code such that any erasure in a coordinate of a codeword can be recovered from a set of other few coordinates. In this article we introduce a model of local recoverable codes that also includes local error detection. The cases of the Reed-Solomon and Locally Recoverable Reed-Solomon codes are treated in some detail.