Do you want to publish a course? Click here

On Quantum Advantage in Information Theoretic Single-Server PIR

487   0   0.0 ( 0 )
 Added by Or Sattath
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In (single-server) Private Information Retrieval (PIR), a server holds a large database $DB$ of size $n$, and a client holds an index $i in [n]$ and wishes to retrieve $DB[i]$ without revealing $i$ to the server. It is well known that information theoretic privacy even against an `honest but curious server requires $Omega(n)$ communication complexity. This is true even if quantum communication is allowed and is due to the ability of such an adversarial server to execute the protocol on a superposition of databases instead of on a specific database (`input purification attack). Nevertheless, there have been some proposals of protocols that achieve sub-linear communication and appear to provide some notion of privacy. Most notably, a protocol due to Le Gall (ToC 2012) with communication complexity $O(sqrt{n})$, and a protocol by Kerenidis et al. (QIC 2016) with communication complexity $O(log(n))$, and $O(n)$ shared entanglement. We show that, in a sense, input purification is the only potent adversarial strategy, and protocols such as the two protocols above are secure in a restricted variant of the quantum honest but curious (a.k.a specious) model. More explicitly, we propose a restricted privacy notion called emph{anchored privacy}, where the adversary is forced to execute on a classical database (i.e. the execution is anchored to a classical database). We show that for measurement-free protocols, anchored security against honest adversarial servers implies anchored privacy even against specious adversaries. Finally, we prove that even with (unlimited) pre-shared entanglement it is impossible to achieve security in the standard specious model with sub-linear communication, thus further substantiating the necessity of our relaxation. This lower bound may be of independent interest (in particular recalling that PIR is a special case of Fully Homomorphic Encryption).



rate research

Read More

Private Information Retrieval (PIR) problem has recently attracted a significant interest in the information-theory community. In this problem, a user wants to privately download one or more messages belonging to a database with copies stored on a single or multiple remote servers. In the single server scenario, the user must have prior side information, i.e., a subset of messages unknown to the server, to be able to privately retrieve the required messages in an efficient way. In the last decade, there has also been a significant interest in Locally Recoverable Codes (LRC), a class of storage codes in which each symbol can be recovered from a limited number of other symbols. More recently, there is an interest in cooperative locally recoverable codes, i.e., codes in which multiple symbols can be recovered from a small set of other code symbols. In this paper, we establish a relationship between coding schemes for the single-server PIR problem and LRCs. In particular, we show the following results: (i) PIR schemes designed for retrieving a single message are equivalent to classical LRCs; and (ii) PIR schemes for retrieving multiple messages are equivalent to cooperative LRCs. These equivalence results allow us to recover upper bounds on the download rate for PIR-SI schemes, and to obtain a novel rate upper bound on cooperative LRCs. We show results for both linear and non-linear codes.
We study the performance of classical and quantum machine learning (ML) models in predicting outcomes of physical experiments. The experiments depend on an input parameter $x$ and involve execution of a (possibly unknown) quantum process $mathcal{E}$. Our figure of merit is the number of runs of $mathcal{E}$ required to achieve a desired prediction performance. We consider classical ML models that perform a measurement and record the classical outcome after each run of $mathcal{E}$, and quantum ML models that can access $mathcal{E}$ coherently to acquire quantum data; the classical or quantum data is then used to predict outcomes of future experiments. We prove that for any input distribution $mathcal{D}(x)$, a classical ML model can provide accurate predictions on average by accessing $mathcal{E}$ a number of times comparable to the optimal quantum ML model. In contrast, for achieving accurate prediction on all inputs, we prove that exponential quantum advantage is possible. For example, to predict expectations of all Pauli observables in an $n$-qubit system $rho$, classical ML models require $2^{Omega(n)}$ copies of $rho$, but we present a quantum ML model using only $mathcal{O}(n)$ copies. Our results clarify where quantum advantage is possible and highlight the potential for classical ML models to address challenging quantum problems in physics and chemistry.
A 2-server Private Information Retrieval (PIR) scheme allows a user to retrieve the $i$th bit of an $n$-bit database replicated among two servers (which do not communicate) while not revealing any information about $i$ to either server. In this work we construct a 1-round 2-server PIR with total communication cost $n^{O({sqrt{loglog n/log n}})}$. This improves over the currently known 2-server protocols which require $O(n^{1/3})$ communication and matches the communication cost of known 3-server PIR schemes. Our improvement comes from reducing the number of servers in existing protocols, based on Matching Vector Codes, from 3 or 4 servers to 2. This is achieved by viewing these protocols in an algebraic way (using polynomial interpolation) and extending them using partial derivatives.
Random access codes have provided many examples of quantum advantage in communication, but concern only one kind of information retrieval task. We introduce a related task - the Torpedo Game - and show that it admits greater quantum advantage than the comparable random access code. Perfect quantum strategies involving prepare-and-measure protocols with experimentally accessible three-level systems emerge via analysis in terms of the discrete Wigner function. The example is leveraged to an operational advantage in a pacifist version of the strategy game Battleship. We pinpoint a characteristic of quantum systems that enables quantum advantage in any bounded-memory information retrieval task. While preparation contextuality has previously been linked to advantages in random access coding we focus here on a different characteristic called sequential contextuality. It is shown not only to be necessary and sufficient for quantum advantage, but also to quantify the degree of advantage. Our perfect qutrit strategy for the Torpedo Game entails the strongest type of inconsistency with non-contextual hidden variables, revealing logical paradoxes with respect to those assumptions.
We propose and analyze a novel interactive protocol for demonstrating quantum computational advantage, which is efficiently classically verifiable. Our protocol relies upon the cryptographic hardness of trapdoor claw-free functions (TCFs). Through a surprising connection to Bells inequality, our protocol avoids the need for an adaptive hardcore bit, with essentially no increase in the quantum circuit complexity and no extra cryptographic assumptions. Crucially, this expands the set of compatible TCFs, and we propose two new constructions: one based upon the decisional Diffie-Hellman problem and the other based upon Rabins function, $x^2 bmod N$. We also describe two unique features of our interactive protocol: (i) it allows one to discard so-called garbage bits, thereby removing the need for reversibility in the quantum circuits, and (ii) there exists a natural post-selection scheme, which significantly reduces the fidelity needed to demonstrate quantum advantage. Finally, we design several efficient circuits for $x^2 bmod N$ and describe a blueprint for their implementation on a Rydberg-atom-based quantum computer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا