Do you want to publish a course? Click here

Parallel Performance of Molecular Dynamics Trajectory Analysis

54   0   0.0 ( 0 )
 Added by Oliver Beckstein
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The performance of biomolecular molecular dynamics simulations has steadily increased on modern high performance computing resources but acceleration of the analysis of the output trajectories has lagged behind so that analyzing simulations is becoming a bottleneck. To close this gap, we studied the performance of parallel trajectory analysis with MPI and the Python MDAnalysis library on three different XSEDE supercomputers where trajectories were read from a Lustre parallel file system. Strong scaling performance was impeded by stragglers, MPI processes that were slower than the typical process. Stragglers were less prevalent for compute-bound workloads, thus pointing to file reading as a bottleneck for scaling. However, a more complicated picture emerged in which both the computation and the data ingestion exhibited close to ideal strong scaling behavior whereas stragglers were primarily caused by either large MPI communication costs or long times to open the single shared trajectory file. We improved overall strong scaling performance by either subfiling (splitting the trajectory into separate files) or MPI-IO with Parallel HDF5 trajectory files. The parallel HDF5 approach resulted in near ideal strong scaling on up to 384 cores (16 nodes), thus reducing trajectory analysis times by two orders of magnitude compared to the serial approach.



rate research

Read More

Molecular Dynamics (MD) codes predict the fundamental properties of matter by following the trajectories of a collection of interacting model particles. To exploit diverse modern manycore hardware, efficient codes must use all available parallelism. At the same time they need to be portable and easily extendible by the domain specialist (physicist/chemist) without detailed knowledge of this hardware. To address this challenge, we recently described a new Domain Specific Language (DSL) for the development of performance portable MD codes based on a Separation of Concerns: a Python framework automatically generates efficient parallel code for a range of target architectures. Electrostatic interactions between charged particles are important in many physical systems and often dominate the runtime. Here we discuss the inclusion of long-range interaction algorithms in our code generation framework. These algorithms require global communications and careful consideration has to be given to any impact on parallel scalability. We implemented an Ewald summation algorithm for electrostatic forces, present scaling comparisons for different system sizes and compare to the performance of existing codes. We also report on further performance optimisations delivered with OpenMP shared memory parallelism.
Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a Separation of Concerns approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.
Using a realistic molecular catalyst system, we conduct scaling studies of ab initio molecular dynamics simulations using the CP2K code on both Intel Xeon CPU and NVIDIA V100 GPU architectures. We explore using process placement and affinity to gain additional performance improvements. We also use statistical methods to understand performance changes in spite of the variability in runtime for each molecular dynamics timestep. We found ideal conditions for CPU runs included at least four MPI ranks per node, bound evenly across each socket, and fully utilizing processing cores with one OpenMP thread per core, no benefit was shown from reserving cores for the system. The CPU-only simulations scaled at 70% or more of the ideal scaling up to 10 compute nodes, after which the returns began to diminish more quickly. Simulations on a single 40-core node with two NVIDIA V100 GPUs for acceleration achieved over 3.7x speedup compared to the fastest single 36-core node CPU-only version, and showed 13% speedup over the fastest time we achieved across five CPU-only nodes.
De novo therapeutic design is challenged by a vast chemical repertoire and multiple constraints, e.g., high broad-spectrum potency and low toxicity. We propose CLaSS (Controlled Latent attribute Space Sampling) - an efficient computational method for attribute-controlled generation of molecules, which leverages guidance from classifiers trained on an informative latent space of molecules modeled using a deep generative autoencoder. We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations. The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency, which are emerging drug candidates for tackling antibiotic resistance. Synthesis and testing of only twenty designed sequences identified two novel and minimalist AMPs with high potency against diverse Gram-positive and Gram-negative pathogens, including one multidrug-resistant and one antibiotic-resistant K. pneumoniae, via membrane pore formation. Both antimicrobials exhibit low in vitro and in vivo toxicity and mitigate the onset of drug resistance. The proposed approach thus presents a viable path for faster and efficient discovery of potent and selective broad-spectrum antimicrobials.
A molecular dynamics calculation of the amino acid polar requirement is presented and used to score the canonical genetic code. Monte Carlo simulation shows that this computational polar requirement has been optimized by the canonical genetic code more than any previously-known measure. These results strongly support the idea that the genetic code evolved from a communal state of life prior to the root of the modern ribosomal tree of life.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا