Do you want to publish a course? Click here

A Domain Specific Language for Performance Portable Molecular Dynamics Algorithms

107   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a Separation of Concerns approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.



rate research

Read More

Molecular Dynamics (MD) codes predict the fundamental properties of matter by following the trajectories of a collection of interacting model particles. To exploit diverse modern manycore hardware, efficient codes must use all available parallelism. At the same time they need to be portable and easily extendible by the domain specialist (physicist/chemist) without detailed knowledge of this hardware. To address this challenge, we recently described a new Domain Specific Language (DSL) for the development of performance portable MD codes based on a Separation of Concerns: a Python framework automatically generates efficient parallel code for a range of target architectures. Electrostatic interactions between charged particles are important in many physical systems and often dominate the runtime. Here we discuss the inclusion of long-range interaction algorithms in our code generation framework. These algorithms require global communications and careful consideration has to be given to any impact on parallel scalability. We implemented an Ewald summation algorithm for electrostatic forces, present scaling comparisons for different system sizes and compare to the performance of existing codes. We also report on further performance optimisations delivered with OpenMP shared memory parallelism.
The ANTAREX project relies on a Domain Specific Language (DSL) based on Aspect Oriented Programming (AOP) concepts to allow applications to enforce extra functional properties such as energy-efficiency and performance and to optimize Quality of Service (QoS) in an adaptive way. The DSL approach allows the definition of energy-efficiency, performance, and adaptivity strategies as well as their enforcement at runtime through application autotuning and resource and power management. In this paper, we present an overview of the key outcome of the project, the ANTAREX DSL, and some of its capabilities through a number of examples, including how the DSL is applied in the context of the project use cases.
Rigid body dynamics algorithms play a crucial role in several components of a robot controller and simulations. Real time constraints in high frequency control loops and time requirements of specific applications demand these functions to be very efficient. Despite the availability of established algorithms, their efficient implementation for a specific robot still is a tedious and error-prone task. However, these components are simply necessary to get high performance controllers. To achieve efficient yet well maintainable implementations of dynamics algorithms we propose to use a domain specific language to describe the kinematics/dynamics model of a robot. Since the algorithms are parameterized on this model, executable code tailored for a specific robot can be generated, thanks to the facilities available for dsls. This approach allows the users to deal only with the high level description of their robot and relieves them from problematic hand-crafted development; resources and efforts can then be focused on open research questions. Preliminary results about the generation of efficient code for inverse dynamics will be presented as a proof of concept of this approach.
Searching for geometric objects that are close in space is a fundamental component of many applications. The performance of search algorithms comes to the forefront as the size of a problem increases both in terms of total object count as well as in the total number of search queries performed. Scientific applications requiring modern leadership-class supercomputers also pose an additional requirement of performance portability, i.e. being able to efficiently utilize a variety of hardware architectures. In this paper, we introduce a new open-source C++ search library, ArborX, which we have designed for modern supercomputing architectures. We examine scalable search algorithms with a focus on performance, including a highly efficient parallel bounding volume hierarchy implementation, and propose a flexible interface making it easy to integrate with existing applications. We demonstrate the performance portability of ArborX on multi-core CPUs and GPUs, and compare it to the state-of-the-art libraries such as Boost.Geometry.Index and nanoflann.
We describe a strategy for code modernisation of Gadget, a widely used community code for computational astrophysics. The focus of this work is on node-level performance optimisation, targeting current multi/many-core IntelR architectures. We identify and isolate a sample code kernel, which is representative of a typical Smoothed Particle Hydrodynamics (SPH) algorithm. The code modifications include threading parallelism optimisation, change of the data layout into Structure of Arrays (SoA), auto-vectorisation and algorithmic improvements in the particle sorting. We obtain shorter execution time and improved threading scalability both on Intel XeonR ($2.6 times$ on Ivy Bridge) and Xeon PhiTM ($13.7 times$ on Knights Corner) systems. First few tests of the optimised code result in $19.1 times$ faster execution on second generation Xeon Phi (Knights Landing), thus demonstrating the portability of the devised optimisation solutions to upcoming architectures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا