Do you want to publish a course? Click here

Long range forces in a performance portable Molecular Dynamics framework

71   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Molecular Dynamics (MD) codes predict the fundamental properties of matter by following the trajectories of a collection of interacting model particles. To exploit diverse modern manycore hardware, efficient codes must use all available parallelism. At the same time they need to be portable and easily extendible by the domain specialist (physicist/chemist) without detailed knowledge of this hardware. To address this challenge, we recently described a new Domain Specific Language (DSL) for the development of performance portable MD codes based on a Separation of Concerns: a Python framework automatically generates efficient parallel code for a range of target architectures. Electrostatic interactions between charged particles are important in many physical systems and often dominate the runtime. Here we discuss the inclusion of long-range interaction algorithms in our code generation framework. These algorithms require global communications and careful consideration has to be given to any impact on parallel scalability. We implemented an Ewald summation algorithm for electrostatic forces, present scaling comparisons for different system sizes and compare to the performance of existing codes. We also report on further performance optimisations delivered with OpenMP shared memory parallelism.



rate research

Read More

Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a Separation of Concerns approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.
Searching for geometric objects that are close in space is a fundamental component of many applications. The performance of search algorithms comes to the forefront as the size of a problem increases both in terms of total object count as well as in the total number of search queries performed. Scientific applications requiring modern leadership-class supercomputers also pose an additional requirement of performance portability, i.e. being able to efficiently utilize a variety of hardware architectures. In this paper, we introduce a new open-source C++ search library, ArborX, which we have designed for modern supercomputing architectures. We examine scalable search algorithms with a focus on performance, including a highly efficient parallel bounding volume hierarchy implementation, and propose a flexible interface making it easy to integrate with existing applications. We demonstrate the performance portability of ArborX on multi-core CPUs and GPUs, and compare it to the state-of-the-art libraries such as Boost.Geometry.Index and nanoflann.
Programming current supercomputers efficiently is a challenging task. Multiple levels of parallelism on the core, on the compute node, and between nodes need to be exploited to make full use of the system. Heterogeneous hardware architectures with accelerators further complicate the development process. waLBerla addresses these challenges by providing the user with highly efficient building blocks for developing simulations on block-structured grids. The block-structured domain partitioning is flexible enough to handle complex geometries, while the structured grid within each block allows for highly efficient implementations of stencil-based algorithms. We present several example applications realized with waLBerla, ranging from lattice Boltzmann methods to rigid particle simulations. Most importantly, these methods can be coupled together, enabling multiphysics simulations. The framework uses meta-programming techniques to generate highly efficient code for CPUs and GPUs from a symbolic method formulation. To ensure software quality and performance portability, a continuous integration toolchain automatically runs an extensive test suite encompassing multiple compilers, hardware architectures, and software configurations.
The performance of biomolecular molecular dynamics simulations has steadily increased on modern high performance computing resources but acceleration of the analysis of the output trajectories has lagged behind so that analyzing simulations is becoming a bottleneck. To close this gap, we studied the performance of parallel trajectory analysis with MPI and the Python MDAnalysis library on three different XSEDE supercomputers where trajectories were read from a Lustre parallel file system. Strong scaling performance was impeded by stragglers, MPI processes that were slower than the typical process. Stragglers were less prevalent for compute-bound workloads, thus pointing to file reading as a bottleneck for scaling. However, a more complicated picture emerged in which both the computation and the data ingestion exhibited close to ideal strong scaling behavior whereas stragglers were primarily caused by either large MPI communication costs or long times to open the single shared trajectory file. We improved overall strong scaling performance by either subfiling (splitting the trajectory into separate files) or MPI-IO with Parallel HDF5 trajectory files. The parallel HDF5 approach resulted in near ideal strong scaling on up to 384 cores (16 nodes), thus reducing trajectory analysis times by two orders of magnitude compared to the serial approach.
Inspired by one--dimensional light--particle systems, the dynamics of a non-Hamiltonian system with long--range forces is investigated. While the molecular dynamics does not reach an equilibrium state, it may be approximated in the thermodynamic limit by a Vlasov equation that does possess stable stationary solutions. This implies that on a macroscopic scale, the molecular dynamics evolves on a slow timescale that diverges with the system size. At the single-particle level, the evolution is driven by incoherent interaction between the particles, which may be effectively modeled by a noise, leading to a Brownian-like dynamics of the momentum. Because this self-generated diffusion process depends on the particle distribution, the associated Fokker-Planck equation is nonlinear, and a subdiffusive behavior of the momentum fluctuation emerges, in agreement with numerics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا