Do you want to publish a course? Click here

Single-lined Spectroscopic Binary Star Candidates from a Combination of the RAVE and Gaia DR2 surveys

111   0   0.0 ( 0 )
 Added by Danijela Birko
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The combination of the final version of the RAVE spectroscopic survey data release 6 with radial velocities and astrometry from Gaia DR2 allows us to identify and create a catalog of single lined binary star candidates (SB1), their inferred orbital parameters, and to inspect possible double lined binary stars (SB2). A probability function for the detection of radial velocity (RV) variations is used for identifying SB1 candidates. The estimation of orbital parameters for main sequence dwarfs is performed by matching the measured RVs with theoretical velocity curves sampling the orbital parameter space. The method is verified by studying a mock sample from the SB9 catalogue. Studying the boxiness and asymmetry of the spectral lines allows us to identify possible SB2 candidates, while matching their spectra to a synthetic library indicates probable properties of their components. From the RAVE catalog we select 37,664 stars with multiple RV measurements and identify 3838 stars as SB1 candidates. Joining RAVE and Gaia DR2 yields 450,646 stars with RVs measured by both surveys and 27,716 of them turn out to be SB1 candidates, which is an increase by an order of magnitude over previous studies. For main sequence dwarf candidates we calculate their most probable orbital parameters: orbital periods are not longer than a few years and primary components have masses similar to the Solar mass. All our results are available via Vizier/CDS.



rate research

Read More

Repeated spectroscopic observations of stars in the Radial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric and other parameters for approximately quarter million of different stars with little less than 300,000 observations. In the sample of ~20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased towards relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVEs narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with the radial velocity variations of up to few tens of km/s. There are 26 matches between the catalog of spectroscopic binary orbits (SB9) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.
106 - E. Trigueros Paez 2021
[ABRIDGED] AIMS: The MONOS project is collecting information and studying O-type spectroscopic binaries with delta > -20 deg. In this 2nd paper, we tackle the study of the 35 single-line spectroscopic binary (SB1) systems identified in the previous paper of the series (arXiv:1904.11385) by analyzing our data and reviewing the literature orbits of such systems. METHODS: We have measured the radial velocities for the ~700 spectra in our database using two different methods: Gaussian fitting for several diagnostic lines per object and cross-correlation using synthetic spectra. We also explored the TESS database and analyzed the light curves for 31 of the systems. RESULTS: We have confirmed 21 SB1 systems, discarded the binary nature of 6 stars (9 Sge, HD 192 281, HDE 229 232 AB, 68 Cyg, HD 108 and alpha Cam), and left 6 stars as inconclusive due to lack of data. The remaining two stars are 15 Mon Aa which has been classified as SB2, and Cyg OB2-22 C, for which we find evidence that it is most likely a triple system where the O star is orbiting an eclipsing SB1. We have also recalculated 20 new orbital solutions, including the first spectroscopic orbital solution for V747 Cep. For Cyg OB2-22 C we have obtained new ephemerides but no new orbit.
The Gaia-ESO Survey (GES) is a large spectroscopic survey that provides a unique opportunity to study the distribution of spectroscopic multiple systems among different populations of the Galaxy. We aim at detecting binarity/multiplicity for stars targeted by the GES from the analysis of the cross-correlation functions (CCFs) of the GES spectra with spectral templates. We develop a method based on the computation of the CCF successive derivatives to detect multiple peaks and determine their radial velocities, even when the peaks are strongly blended. The parameters of the detection of extrema (DOE) code have been optimized for each GES GIRAFFE and UVES setup to maximize detection. This code therefore allows to automatically detect multiple line spectroscopic binaries (SBn, n>1). We apply this method on the fourth GES internal data release and detect 354 SBn candidates (342 SB2, 11 SB3 and even one SB4), including only 9 SB2 known in the literature. This implies that about 98% of these SBn candidates are new (because of their faint visual magnitude that can reach V=19). Visual inspection of the SBn candidate spectra reveals that the most probable candidates have indeed a composite spectrum. Among SB2 candidates, an orbital solution could be computed for two previously unknown binaries: 06404608+0949173 (known as V642 Mon) in NGC 2264 and 19013257-0027338 in Berkeley 81. A detailed analysis of the unique SB4 (four peaks in the CCF) reveals that HD 74438 in the open cluster IC 2391 is a physically bound stellar quadruple system. The SB candidates belonging to stellar clusters are reviewed in detail to discard false detections. We warn against the use of atmospheric parameters for these system components rather than by SB-specific pipelines. Our implementation of an automatic detection of spectroscopic binaries within the GES has allowed an efficient discovery of many new multiple systems.
R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new Xshooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope (VLT). We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km/s in NIV and NV lines. Furthermore, the NIII and NV line Doppler shifts are anti-correlated and the NIV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from 2 to 6 months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/Lsun ~ 6.8) suggests a present-day total mass content in the range of about 200 to 300 Msun, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 Msun. We briefly discuss the presence of such a massive object 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.
73 - A. Collado 2015
Double-lined spectroscopic binary systems, containing a Wolf-Rayet and a massive O-type star, are key objects for the study of massive star evolution because these kinds of systems allow the determination of fundamental astrophysical parameters of their components. We have performed spectroscopic observations of the star WR 68a as part of a dedicated monitoring program of WR stars to discover new binary systems. We identified spectral lines of the two components of the system and disentangled the spectra. We measured the radial velocities in the separated spectra and determined the orbital solution. We discovered that WR 68a is a double- lined spectroscopic binary with an orbital period of 5.2207 days, very small or null eccentricity, and inclination ranging between 75 and 85 deg. We classified the binary components as WN6 and O5.5-6. The WN star is less massive than the O-type star with minimum masses of 15 +/- 5 Msun and 30 +/- 4 Msun , respectively. The equivalent width of the He II {lambda}4686 emission line shows variations with the orbital phase, presenting a minimum when the WN star is in front of the system. The light curve constructed from available photometric data presents minima in both conjunctions of the system
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا