Do you want to publish a course? Click here

MONOS.II. Orbit review and analysis for 35 single-lined spectroscopic binary systems and candidates

107   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

[ABRIDGED] AIMS: The MONOS project is collecting information and studying O-type spectroscopic binaries with delta > -20 deg. In this 2nd paper, we tackle the study of the 35 single-line spectroscopic binary (SB1) systems identified in the previous paper of the series (arXiv:1904.11385) by analyzing our data and reviewing the literature orbits of such systems. METHODS: We have measured the radial velocities for the ~700 spectra in our database using two different methods: Gaussian fitting for several diagnostic lines per object and cross-correlation using synthetic spectra. We also explored the TESS database and analyzed the light curves for 31 of the systems. RESULTS: We have confirmed 21 SB1 systems, discarded the binary nature of 6 stars (9 Sge, HD 192 281, HDE 229 232 AB, 68 Cyg, HD 108 and alpha Cam), and left 6 stars as inconclusive due to lack of data. The remaining two stars are 15 Mon Aa which has been classified as SB2, and Cyg OB2-22 C, for which we find evidence that it is most likely a triple system where the O star is orbiting an eclipsing SB1. We have also recalculated 20 new orbital solutions, including the first spectroscopic orbital solution for V747 Cep. For Cyg OB2-22 C we have obtained new ephemerides but no new orbit.



rate research

Read More

Repeated spectroscopic observations of stars in the Radial Velocity Experiment (RAVE) database are used to identify and examine single-lined binary (SB1) candidates. The RAVE latest internal database (VDR3) includes radial velocities, atmospheric and other parameters for approximately quarter million of different stars with little less than 300,000 observations. In the sample of ~20,000 stars observed more than once, 1333 stars with variable radial velocities were identified. Most of them are believed to be SB1 candidates. The fraction of SB1 candidates among stars with several observations is between 10% and 15% which is the lower limit for binarity among RAVE stars. Due to the distribution of time spans between the re-observation that is biased towards relatively short timescales (days to weeks), the periods of the identified SB1 candidates are most likely in the same range. Because of the RAVEs narrow magnitude range most of the dwarf candidates belong to the thin Galactic disk while the giants are part of the thick disk with distances extending to up to a few kpc. The comparison of the list of SB1 candidates to the VSX catalog of variable stars yielded several pulsating variables among the giant population with the radial velocity variations of up to few tens of km/s. There are 26 matches between the catalog of spectroscopic binary orbits (SB9) and the whole RAVE sample for which the given periastron time and the time of RAVE observation were close enough to yield a reliable comparison. RAVE measurements of radial velocities of known spectroscopic binaries are consistent with their published radial velocity curves.
The combination of the final version of the RAVE spectroscopic survey data release 6 with radial velocities and astrometry from Gaia DR2 allows us to identify and create a catalog of single lined binary star candidates (SB1), their inferred orbital parameters, and to inspect possible double lined binary stars (SB2). A probability function for the detection of radial velocity (RV) variations is used for identifying SB1 candidates. The estimation of orbital parameters for main sequence dwarfs is performed by matching the measured RVs with theoretical velocity curves sampling the orbital parameter space. The method is verified by studying a mock sample from the SB9 catalogue. Studying the boxiness and asymmetry of the spectral lines allows us to identify possible SB2 candidates, while matching their spectra to a synthetic library indicates probable properties of their components. From the RAVE catalog we select 37,664 stars with multiple RV measurements and identify 3838 stars as SB1 candidates. Joining RAVE and Gaia DR2 yields 450,646 stars with RVs measured by both surveys and 27,716 of them turn out to be SB1 candidates, which is an increase by an order of magnitude over previous studies. For main sequence dwarf candidates we calculate their most probable orbital parameters: orbital periods are not longer than a few years and primary components have masses similar to the Solar mass. All our results are available via Vizier/CDS.
Accurate stellar parameters of individual objects in binary systems are essential to constrain the effects of binarity on stellar evolution. These parameters serve as a prerequisite to probing existing and future theoretical evolutionary models. We aim to derive the atmospheric parameters of the 31 SB2s in the TMBM sample. This sample, composed of detached, semi-detached and contact systems with at least one of the components classified as an O star, is an excellent test-bed to study how binarity can impact our knowledge of the evolution of massive stars. 32 epochs of FLAMES/GIRAFFE spectra are analysed using spectral disentangling to construct the individual spectra of 62 components. We apply the CMFGEN atmosphere code to determine their stellar parameters and their He, C and N surface abundances. From these properties, we show that the effects of tides on chemical mixing are limited. Components on longer-period orbits show higher nitrogen enrichment at their surface than those on shorter-period orbits, in contrast to expectations of rotational or tidal mixing, implying that other mechanisms play a role in this process. Components filling their Roche lobe are mass donors. They exhibit higher nitrogen content at their surface and rotate more slowly than their companions. By accreting new material, their companions spin faster and are rejuvenated. Their locations in the N-vsini diagram tend to show that binary products are good candidates to populate the two groups of stars (slowly rotating, nitrogen-enriched and rapidly rotating non-enriched) that cannot be reproduced through single-star population synthesis. This sample is the largest sample of binaries to be studied in such a homogeneous way. The study of these objects gives us strong observational constraints to test theoretical binary evolutionary tracks.
We present an overview and current status of research on RR Lyrae stars in binary systems. In present days the number of binary candidates has steeply increased and suggested that multiple stellar systems with an RR Lyrae component is much higher than previously thought. We discuss the probability of their detection using various observing methods, compare recent results regarding selection effects, period distribution, proposed orbital parameters and the Blazhko effect.
R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new Xshooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope (VLT). We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km/s in NIV and NV lines. Furthermore, the NIII and NV line Doppler shifts are anti-correlated and the NIV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from 2 to 6 months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/Lsun ~ 6.8) suggests a present-day total mass content in the range of about 200 to 300 Msun, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 Msun. We briefly discuss the presence of such a massive object 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا