Do you want to publish a course? Click here

Status of the KATRIN neutrino mass experiment

57   0   0.0 ( 0 )
 Added by Yung-Ruey Yen
 Publication date 2019
  fields Physics
and research's language is English
 Authors Yung-Ruey Yen




Ask ChatGPT about the research

The KArlsruhe TRItium Neutrino (KATRIN) experiment is designed to measure tritium $beta$-decay spectrum with enough precision to be sensitive to neutrino mass down to 0.2eV at 90$%$ Confidence Level. After an initial first tritium run in the summer of 2018, KATRIN is taking tritium data in 2019 that should lead to a first neutrino mass result. The $beta$ spectral shape of the tritium decay is also sensitive to four countershaded Lorentz Violating (LV), oscillation-free operators within the Standard-Model Extension that may be quite large. The status and outlook of KATRIN to produce physics results, including in the LV sector, are discussed.



rate research

Read More

KATRIN is a very large scale tritium-beta-decay experiment to determine the mass of the neutrino. It is presently under construction at the Forschungszentrum Karlsruhe, and makes use of the Tritium Laboratory built there for the ITER project. The combination of a very large retarding-potential electrostatic-magnetic spectrometer and an intense gaseous molecular tritium source makes possible a sensitivity to neutrino mass of 0.2 eV, about an order of magnitude below present laboratory limits. The measurement is kinematic and independent of whether the neutrino is Dirac or Majorana. The status of the project is summarized briefly in this report.
65 - J. L. Holzbauer 2017
The Muon g-2 experiment at Fermilab will measure the anomalous magnetic moment of the muon to a precision of 140 parts per billion, which is a factor of four improvement over the previous E821 measurement at Brookhaven. The experiment will also extend the search for the muon electric dipole moment (EDM) by approximately two orders of magnitude. Both of these measurements are made by combining a precise measurement of the 1.45T storage ring magnetic field with an analysis of the modulation of the decay rate of the higher-energy positrons from the (anti-)muon decays recorded by 24 calorimeters and 3 straw tracking detectors. The current status of the experiment as well as results from the initial beam delivery and commissioning run in the summer of 2017 will be discussed.
We studied the effects of the absolute neutrino mass scale in the scotogenic radiative seesaw model. From a scan over the parameter space of this model, a linear relation between the absolute neutrino mass and the dark sector-Higgs coupling $lambda_5= 3.1times10^{-9} m_{ u_e}/$eV has been established. With the projected sensitivity of the KATRIN experiment nearing cosmologically favored values, a neutrino mass measurement would fix the value of $lambda_5$. Subsequent correlations between the DM mass and the Yukawa coupling between DM and the SM leptons can probe the fermion DM parameter space, when lepton flavor violation constraints are also considered. The results are independent of the neutrino mass hierarchy and the CP phase.
233 - D.S. Parno 2013
The KATRIN experiment, presently under construction in Karlsruhe, Germany, will improve on previous laboratory limits on the neutrino mass by a factor of ten. KATRIN will use a high-activity, gaseous T2 source and a very high-resolution spectrometer to measure the shape of the high-energy tail of the tritium-decay beta spectrum. The shape measurement will also be sensitive to new physics, including sterile neutrinos and Lorentz violation. This report summarizes recent progress in the experiment.
143 - Ernesto Kemp 2017
The last decade was remarkable for neutrino physics. In particular, the phenomenon of neutrino flavor oscillations has been firmly established by a series of independent measurements. All parameters of the neutrino mixing are now known and we have elements to plan a judicious exploration of new scenarios that are opened by these recent advances. With precise measurements, we can test the 3-neutrino paradigm, neutrino mass hierarchy and CP asymmetry in the lepton sector. The future long-baseline experiments are considered to be a fundamental tool to deepen our knowledge of electroweak interactions. The Deep Underground Neutrino Experiment -- DUNE will detect a broad-band neutrino beam from Fermilab in an underground massive Liquid Argon Time-Projection Chamber at an L/E of about $10^3$ km / GeV to reach good sensitivity for CP-phase measurements and the determination of the mass hierarchy. The dimensions and the depth of the Far Detector also create an excellent opportunity to look for rare signals like proton decay to study violation of baryonic number, as well as supernova neutrino bursts, broadening the scope of the experiment to astrophysics and associated impacts in cosmology. In this presentation, we will discuss the physics motivations and the main experimental features of the DUNE project required to reach its scientific goals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا