Do you want to publish a course? Click here

On the module category of generalized preprojective algebras of Dynkin types

123   0   0.0 ( 0 )
 Added by Kota Murakami
 Publication date 2019
  fields
and research's language is English
 Authors Kota Murakami




Ask ChatGPT about the research

For a symmetrizable GCM $C$ and its symmetrizer $D$, Geiss-Leclerc-Schroer [Invent. Math. 209 (2017)] has introduced a generalized preprojective algebra $Pi$ associated to $C$ and $D$, that contains a class of modules, called locally free modules. We show that any basic support $tau$-tilting $Pi$-module is locally free and gives a classification theorem of torsion-free classes in $operatorname{mathbf{rep}}{Pi}$ as the generalization of the work of Mizuno [Math. Z. 277 (2014)].



rate research

Read More

171 - Kota Murakami 2020
Geiss-Leclerc-Schroer [Invent. Math. 209 (2017)] has introduced a notion of generalized preprojective algebra associated with a generalized Cartan matrix and its symmetrizer. This class of algebra realizes a crystal structure on the set of maximal dimensional irreducible components of the nilpotent variety [Selecta Math. (N.S.) 24 (2018)]. For general finite types, we give stratifications of these components via partial orders of torsion classes in module categories of generalized preprojective algebras in terms of Weyl groups. In addition, we realize Mirkovic-Vilonen polytopes from generic modules of these components, and give a identification as crystals between the set of Mirkovic-Vilonen polytopes and the set of maximal dimensional irreducible components except for type $mathsf{G}_2$. This generalizes results of Baumann-Kamnitzer [Represent. Theory 16 (2012)] and Baumann-Kamnitzer-Tingley [Publ. Math. Inst. Hautes Etudes Sci. 120 (2014)].
Let $mathfrak{g}_0$ be a simple Lie algebra of type ADE and let $U_q(mathfrak{g})$ be the corresponding untwisted quantum affine algebra. We show that there exists an action of the braid group $B(mathfrak{g}_0)$ on the quantum Grothendieck ring $K_t(mathfrak{g})$ of Hernandez-Leclercs category $C_{mathfrak{g}}^0$. Focused on the case of type $A_{N-1}$, we construct a family of monoidal autofunctors ${mathscr{S}_i}_{iin mathbb{Z}}$ on a localization $T_N$ of the category of finite-dimensional graded modules over the quiver Hecke algebra of type $A_{infty}$. Under an isomorphism between the Grothendieck ring $K(T_N)$ of $T_N$ and the quantum Grothendieck ring $K_t({A^{(1)}_{N-1}})$, the functors ${mathscr{S}_i}_{1le ile N-1}$ recover the action of the braid group $B(A_{N-1})$. We investigate further properties of these functors.
203 - Ryo Fujita , Kota Murakami 2021
We give an interpretation of the $(q,t)$-deformed Cartan matrices of finite type and their inverses in terms of bigraded modules over the generalized preprojective algebras of Langlands dual type in the sense of Geiss-Leclerc-Schr{o}er~[Invent.~math.~{bf{209}} (2017)]. As an application, we compute the first extension groups between the generic kernels introduced by Hernandez-Leclerc~[J.~Eur.~Math.~Soc.~{bf 18} (2016)], and propose a conjecture that their dimensions coincide with the pole orders of the normalized $R$-matrices between the corresponding Kirillov-Reshetikhin modules.
Let $U_q(mathfrak{g})$ be a quantum affine algebra of untwisted affine ADE type and let $mathcal{C}^0_{mathfrak{g}}$ be Hernandez-Leclercs category. For a duality datum $mathcal{D}$ in $mathcal{C}^0_{mathfrak{g}}$, we denote by $mathcal{F}_{mathcal{D}}$ the quantum affine Weyl-Schur duality functor. We give sufficient conditions for a duality datum $mathcal{D}$ to provide the functor $mathcal{F}_{mathcal{D}}$ sending simple modules to simple modules. Then we introduce the notion of cuspidal modules in $mathcal{C}^0_{mathfrak{g}}$, and show that all simple modules in $mathcal{C}^0_{mathfrak{g}}$ can be constructed as the heads of ordered tensor products of cuspidal modules.
334 - Travis Schedler 2016
We determine the Z-module structure of the preprojective algebra and its zeroth Hochschild homology, for any non-Dynkin quiver (and hence the structure working over any base commutative ring, of any characteristic). This answers (and generalizes) a conjecture of Hesselholt and Rains, producing new $p$-torsion classes in degrees 2p^l, l >= 1, We relate these classes by p-th power maps and interpret them in terms of the kernel of Verschiebung maps from noncommutative Witt theory. An important tool is a generalization of the Diamond Lemma to modules over commutative rings, which we give in the appendix. In the previous version, additional results are included, such as: the Poisson center of $text{Sym } HH_0(Pi)$ for all quivers, the BV algebra structure on Hochschild cohomology, including how the Lie algebra structure $HH_0(Pi_Q)$ naturally arises from it, and the cyclic homology groups of $Pi_Q$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا