No Arabic abstract
We develop a theoretical and computational framework to study polarons in semiconductors and insulators from first principles. Our approach provides the formation energy, excitation energy, and wavefunction of both electron and hole polarons, and takes into account the coupling of the electron or hole to all phonons. An important feature of the present method is that it does not require supercell calculations, and relies exclusively on electron band structures, phonon dispersions, and electron-phonon matrix elements obtained from calculations in the crystal unit cell. Starting from the Kohn-Sham (KS) equations of density-functional theory, we formulate the polaron problem as a variational minimization, and we obtain a nonlinear eigenvalue problem in the basis of KS states and phonon eigenmodes. In our formalism the electronic component of the polaron is expressed as a coherent superposition of KS states, in close analogy with the solution of the Bethe-Salpeter equation for the calculation of excitons. We demonstrate the power of the methodology by studying polarons in LiF and Li2O2. We show that our method describes both small and large polarons, and seamlessly captures Frohlich-type polar electron-phonon coupling and non-Frohlich coupling to acoustic and optical phonons. To analyze in quantitative terms the electron-phonon coupling mechanisms leading to the formation of polarons, we introduce spectral decompositions similar to the Eliashberg spectral function. We validate our theory using both analytical results and direct calculations on large supercells. This study constitutes a first step toward complete ab initio many-body calculations of polarons in real materials.
A Kubo-Greenwood-like equation for the Gilbert damping parameter $alpha$ is presented that is based on the linear response formalism. Its implementation using the fully relativistic Korringa-Kohn-Rostoker (KKR) band structure method in combination with Coherent Potential Approximation (CPA) alloy theory allows it to be applied to a wide range of situations. This is demonstrated with results obtained for the bcc alloy system Fe$_x$Co$_{1-x}$ as well as for a series of alloys of permalloy with 5d transition metals. To account for the thermal displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. The corresponding calculations for Ni correctly describe the rapid change of $alpha$ when small amounts of substitutional Cu are introduced.
We have implemented a generic method, based on the 2n+1 theorem within density functional perturbation theory, to calculate the anharmonic scattering coefficients among three phonons with arbitrary wavevectors. The method is used to study the phonon broadening in graphite and graphene mono- and bi-layer. The broadening of the high-energy optical branches is highly nonuniform and presents a series of sudden steps and spikes. At finite temperature, the two linearly dispersive acoustic branches TA and LA of graphene have nonzero broadening for small wavevectors. The broadening in graphite and bi-layer graphene is, overall, very similar to the graphene one, the most remarkable feature being the broadening of the quasi acoustical ZO branch. Finally, we study the intrinsic anharmonic contribution to the thermal conductivity of the three systems, within the single mode relaxation time approximation. We find the conductance to be in good agreement with experimental data for the out-of-plane direction but to underestimate it by a factor 2 in-plane.
We have developed an efficient and reliable methodology for crystal structure prediction, merging ab initio total-energy calculations and a specifically devised evolutionary algorithm. This method allows one to predict the most stable crystal structure and a number of low-energy metastable structures for a given compound at any P-T conditions without requiring any experimental input. Extremely high success rate has been observed in a few tens of tests done so far, including ionic, covalent, metallic, and molecular structures with up to 40 atoms in the unit cell. We have been able to resolve some important problems in high-pressure crystallography and report a number of new high-pressure crystal structures. Physical reasons for the success of this methodology are discussed.
The potential of a wide range of layered ternary carbide and nitride MAX phases as conductors in interconnect metal lines in advanced CMOS technology nodes has been evaluated using automated first principles simulations based on density functional theory. The resistivity scaling potential of these compounds, i.e. the sensitivity of their resistivity to reduced line dimensions, has been benchmarked against Cu and Ru by evaluating their transport properties within a semiclassical transport formalism. In addition, their cohesive energy has been assessed as a proxy for the resistance against electromigration and the need for diffusion barriers. The results indicate that numerous MAX phases show promise as conductors in interconnects of advanced CMOS technology nodes.
A method is proposed to study the finite-temperature behaviour of small magnetic clusters based on solving the stochastic Landau-Lifshitz-Gilbert equations, where the effective magnetic field is calculated directly during the solution of the dynamical equations from first principles instead of relying on an effective spin Hamiltonian. Different numerical solvers are discussed in the case of a one-dimensional Heisenberg chain with nearest-neighbour interactions. We performed detailed investigations for a monatomic chain of ten Co atoms on top of Au(001) surface. We found a spiral-like ground state of the spins due to Dzyaloshinsky-Moriya interactions, while the finite-temperature magnetic behaviour of the system was well described by a nearest-neighbour Heisenberg model including easy-axis anisotropy.