No Arabic abstract
We construct the first rotating string solution in 6-dimensional Einstein-Gauss-Bonnet supergravity, carrying both electric and magnetic charges. By embedding the known rotating string solution of the 2-derivative theory into 6-dimensional off-shell supergravity, the Killing spinors associated with the underlying supersymmetry can be made off-shell and are universal to all off-shell supergravity models based on the same field content. The near-horizon geometry is S^3 fibred over the extremal BTZ black hole, locally isomorphic to AdS_3*S^3. We compute the higher-derivative corrections to the Brown-Henneaux central charges in a particular R+R^2 model resulting from K3 compactification of type IIA string theory.
Gauged off-shell Maxwell-Einstein supergravity in six dimensions with N=(1,0) supersymmetry has a higher derivative extension afforded by a supersymmetrized Riemann squared term. This theory admits a supersymmetric Minkowski x S^2 compactification with a U(1) monopole of unit charge on S^2. We determine the full spectrum of the theory on this background. We also determine the spectrum on a non-supersymmetric version of this compactification in which the monopole charge is different from unity, and we find the peculiar feature that there are massless gravitini in a representation of the S^2 isometry group determined by the monopole charge.
We develop geometric superspace settings to construct arbitrary higher derivative couplings (including R^n terms) in three-dimensional supergravity theories with N=1,2,3 by realising them as conformal supergravity coupled to certain compensators. For all known off-shell supergravity formulations, we construct supersymmetric invariants with up to and including four derivatives. As a warming-up exercise, we first give a new and completely geometric derivation of such invariants in N=1 supergravity. Upon reduction to components, they agree with those given in arXiv:0907.4658 and arXiv:1005.3952. We then carry out a similar construction in the case of N=2 supergravity for which there exist two minimal formulations that differ by the choice of compensating multiplet: (i) a chiral scalar multipet; (ii) a vector multiplet. For these formulations all four derivative invariants are constructed in completely general and gauge independent form. For a general supergravity model (in the N=1 and minimal N=2 cases) with curvature-squared and lower order terms, we derive the superfield equations of motion, linearise them about maximally supersymmetric backgrounds and obtain restrictions on the parameters that lead to models for massive supergravity. We use the non-minimal formulation for N = 2 supergravity (which corresponds to a complex linear compensator) to construct a novel consistent theory of massive supergravity. In the case of N = 3 supergravity, we employ the off-shell formulation with a vector multiplet as compensator to construct for the first time various higher derivative invariants. These invariants may be used to derive models for N = 3 massive supergravity. As a bi-product of our analysis, we also present superfield equations for massive higher spin multiplets in (1,0), (1,1) and (2,0) anti-de Sitter superspaces.
An action for the higher-derivative corrections to minimal gauged supergravity in four dimensions has been recently proposed. We demonstrate that the supersymmetric solutions of this model are those of the two-derivative action, and investigate some of their properties. In particular, we prove a formula for the renormalised on-shell action in terms of contributions from fixed points of a $U(1)$ action, and confirm that it is invariant under deformations which preserve the boundary almost contact structure.
Within the framework of six-dimensional ${cal N}=(1,0)$ conformal supergravity, we introduce new off-shell multiplets ${cal O}{}^{*}(n)$, where $n=3,4,dots,$ and use them to construct higher-rank extensions of the linear multiplet action. The ${cal O}{}^{*}(n)$ multiplets may be viewed as being dual to well-known superconformal ${cal O}(n)$ multiplets. We provide prepotential formulations for the ${cal O}(n)$ and ${cal O}{}^{*}(n)$ multiplets coupled to conformal supergravity. For every ${cal O}{}^{*}(n)$ multiplet, we construct a higher derivative invariant which is superconformal on arbitrary superconformally flat backgrounds. We also show how our results can be used to construct new higher derivative actions in supergravity.
We use conformal supergravity techniques to study four-derivative corrections in four-dimensional gauged supergravity. We show that the four-derivative Lagrangian for the propagating degrees of freedom of the $mathcal{N}=2$ gravity multiplet is determined by two real dimensionless constants. We demonstrate that all solutions of the two-derivative equations of motion in the supergravity theory also solve the four-derivative equations of motion. These results are then applied to explicitly calculate the regularized on-shell action for any asymptotically locally AdS$_4$ solution of the two-derivative equations of motion. The four-derivative terms in the supergravity Lagrangian modify the entropy and other thermodynamic observables for the black hole solutions of the theory. We calculate these corrections explicitly and demonstrate that the quantum statistical relation holds for general stationary black holes in the presence of the four-derivative corrections. Employing an embedding of this supergravity model in M-theory we show how to use supersymmetric localization results in the holographically dual three-dimensional SCFT to determine the unknown coefficients in the four-derivative supergravity action. This in turn leads to new detailed results for the first subleading $N^{frac{1}{2}}$ correction to the large $N$ partition function of a class of three-dimensional SCFTs on compact Euclidean manifolds. In addition, we calculate explicitly the first subleading correction to the Bekenstein-Hawking entropy of asymptotically AdS$_4$ black holes in M-theory. We also discuss how to add matter multiplets to the supergravity theory in the presence of four-derivative terms and to generalize some of these results to six- and higher-derivative supergravity.