Do you want to publish a course? Click here

New superconformal multiplets and higher derivative invariants in six dimensions

77   0   0.0 ( 0 )
 Added by Joseph Novak
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Within the framework of six-dimensional ${cal N}=(1,0)$ conformal supergravity, we introduce new off-shell multiplets ${cal O}{}^{*}(n)$, where $n=3,4,dots,$ and use them to construct higher-rank extensions of the linear multiplet action. The ${cal O}{}^{*}(n)$ multiplets may be viewed as being dual to well-known superconformal ${cal O}(n)$ multiplets. We provide prepotential formulations for the ${cal O}(n)$ and ${cal O}{}^{*}(n)$ multiplets coupled to conformal supergravity. For every ${cal O}{}^{*}(n)$ multiplet, we construct a higher derivative invariant which is superconformal on arbitrary superconformally flat backgrounds. We also show how our results can be used to construct new higher derivative actions in supergravity.

rate research

Read More

We formulate off-shell N=1 superconformal higher spin multiplets in four spacetime dimensions and briefly discuss their coupling to conformal supergravity. As an example, we explicitly work out the coupling of the superconformal gravitino multiplet to conformal supergravity. The corresponding action is super-Weyl invariant for arbitrary supergravity backgrounds. However, it is gauge invariant only if the supersymmetric Bach tensor vanishes. This is similar to linearised conformal supergravity in curved background.
We propose generalised $mathcal{N}=1$ superconformal higher-spin (SCHS) gauge multiplets of depth $t$, $Upsilon_{alpha(n)dot{alpha}(m)}^{(t)}$, with $ngeq m geq 1$. At the component level, for $t>2$ they contain generalised conformal higher-spin (CHS) gauge fields with depths $t-1$, $t$ and $t+1$. The supermultiplets with $t=1$ and $t=2$ include both ordinary and generalised CHS gauge fields. Super-Weyl and gauge invariant actions describing the dynamics of $Upsilon_{alpha(n)dot{alpha}(m)}^{(t)}$ on conformally-flat superspace backgrounds are then derived. For the case $n=m=t=1$, corresponding to the maximal-depth conformal graviton supermultiplet, we extend this action to Bach-flat backgrounds. Models for superconformal non-gauge multiplets, which are expected to play an important role in the Bach-flat completions of the models for $Upsilon^{(t)}_{alpha(n)dot{alpha}(m)}$, are also provided. Finally we show that, on Bach-flat backgrounds, requiring gauge and Weyl invariance does not always determine a model for a CHS field uniquely.
126 - David D. K. Chow , Yi Pang 2019
We construct the first rotating string solution in 6-dimensional Einstein-Gauss-Bonnet supergravity, carrying both electric and magnetic charges. By embedding the known rotating string solution of the 2-derivative theory into 6-dimensional off-shell supergravity, the Killing spinors associated with the underlying supersymmetry can be made off-shell and are universal to all off-shell supergravity models based on the same field content. The near-horizon geometry is S^3 fibred over the extremal BTZ black hole, locally isomorphic to AdS_3*S^3. We compute the higher-derivative corrections to the Brown-Henneaux central charges in a particular R+R^2 model resulting from K3 compactification of type IIA string theory.
We study $(2,2)$ and $(4,4)$ supersymmetric theories with superspace higher derivatives in two dimensions. A characteristic feature of these models is that they have several different vacua, some of which break supersymmetry. Depending on the vacuum, the equations of motion describe different propagating degrees of freedom. Various examples are presented which illustrate their generic properties. As a by-product we see that these new vacua give a dynamical way of generating non-linear realizations. In particular, our 2D $(4,4)$ example is the dimensional reduction of a 4D $N=2$ model, and gives a new way for the spontaneous breaking of extended supersymmetry.
We develop geometric superspace settings to construct arbitrary higher derivative couplings (including R^n terms) in three-dimensional supergravity theories with N=1,2,3 by realising them as conformal supergravity coupled to certain compensators. For all known off-shell supergravity formulations, we construct supersymmetric invariants with up to and including four derivatives. As a warming-up exercise, we first give a new and completely geometric derivation of such invariants in N=1 supergravity. Upon reduction to components, they agree with those given in arXiv:0907.4658 and arXiv:1005.3952. We then carry out a similar construction in the case of N=2 supergravity for which there exist two minimal formulations that differ by the choice of compensating multiplet: (i) a chiral scalar multipet; (ii) a vector multiplet. For these formulations all four derivative invariants are constructed in completely general and gauge independent form. For a general supergravity model (in the N=1 and minimal N=2 cases) with curvature-squared and lower order terms, we derive the superfield equations of motion, linearise them about maximally supersymmetric backgrounds and obtain restrictions on the parameters that lead to models for massive supergravity. We use the non-minimal formulation for N = 2 supergravity (which corresponds to a complex linear compensator) to construct a novel consistent theory of massive supergravity. In the case of N = 3 supergravity, we employ the off-shell formulation with a vector multiplet as compensator to construct for the first time various higher derivative invariants. These invariants may be used to derive models for N = 3 massive supergravity. As a bi-product of our analysis, we also present superfield equations for massive higher spin multiplets in (1,0), (1,1) and (2,0) anti-de Sitter superspaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا