Do you want to publish a course? Click here

An ultraweak formulation of the Reissner-Mindlin plate bending model and DPG approximation

117   0   0.0 ( 0 )
 Added by Norbert Heuer
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

We develop and analyze an ultraweak variational formulation of the Reissner-Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness $t$. We also prove weak convergence of the Reissner-Mindlin solution to the solution of the corresponding Kirchhoff-Love model when $tto 0$. Based on the ultraweak formulation, we introduce a discretization of the discontinuous Petrov-Galerkin type with optimal test functions (DPG) and prove its uniform quasi-optimal convergence. Our theory covers the case of non-convex polygonal plates. A numerical experiment for some smooth model solutions with fixed load confirms that our scheme is locking free.



rate research

Read More

We develop and analyze an ultraweak variational formulation for a variant of the Kirchhoff-Love plate bending model. Based on this formulation, we introduce a discretization of the discontinuous Petrov-Galerkin type with optimal test functions (DPG). We prove well-posedness of the ultraweak formulation and quasi-optimal convergence of the DPG scheme. The variational formulation and its analysis require tools that control traces and jumps in $H^2$ (standard Sobolev space of scalar functions) and $H(mathrm{div,Div})$ (symmetric tensor functions with $L_2$-components whose twice iterated divergence is in $L_2$), and their dualities. These tools are developed in two and three spatial dimensions. One specific result concerns localized traces in a dense subspace of $H(mathrm{div,Div})$. They are essential to construct basis functions for an approximation of $H(mathrm{div,Div})$. To illustrate the theory we construct basis functions of the lowest order and perform numerical experiments for a smooth and a singular model solution. They confirm the expected convergence behavior of the DPG method both for uniform and adaptively refined meshes.
In this work we propose a discretisation method for the Reissner--Mindlin plate bending problem in primitive variables that supports general polygonal meshes and arbitrary order. The method is inspired by a two-dimensional discrete de Rham complex for which key commutation properties hold that enable the cancellation of the contribution to the error linked to the enforcement of the Kirchhoff constraint. Denoting by $kge 0$ the polynomial degree for the discrete spaces and by $h$ the meshsize, we derive for the proposed method an error estimate in $h^{k+1}$ for general $k$, as well as a locking-free error estimate for the lowest-order case $k=0$. The theoretical results are validated on a complete panel of numerical tests.
We extend the analysis and discretization of the Kirchhoff-Love plate bending problem from [T. Fuhrer, N. Heuer, A.H. Niemi, An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation, arXiv:1805.07835, 2018] in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that includes the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than $L_2$-regular. Numerical results illustrate expected convergence orders.
This paper presents a novel total Lagrangian cell-centred finite volume formulation of geometrically exact beams with arbitrary initial curvature undergoing large displacements and finite rotations. The choice of rotation parametrisation, the mathematical formulation of the beam kinematics, conjugate strain measures and the linearisation of the strong form of governing equations is described. The finite volume based discretisation of the computational domain and the governing equations for each computational volume are presented. The discretised integral form of the equilibrium equations are solved using a block-coupled Newton-Raphson solution procedure. The efficacy of the proposed methodology is presented by comparing the simulated numerical results with classic benchmark test cases available in the literature. The objectivity of strain measures for the current formulation and mesh convergence studies for both initially straight and curved beam configurations are also discussed.
We propose an adaptive multigrid preconditioning technology for solving linear systems arising from Discontinuous Petrov-Galerkin (DPG) discretizations. Unlike standard multigrid techniques, this preconditioner involves only trace spaces defined on the mesh skeleton, and it is suitable for adaptive hp-meshes. The key point of the construction is the integration of the iterative solver with a fully automatic and reliable mesh refinement process provided by the DPG technology. The efficacy of the solution technique is showcased with numerous examples of linear acoustics and electromagnetic simulations, including simulations in the high-frequency regime, problems which otherwise would be intractable. Finally, we analyze the one-level preconditioner (smoother) for uniform meshes and we demonstrate that theoretical estimates of the condition number of the preconditioned linear system can be derived based on well established theory for self-adjoint positive definite operators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا