Do you want to publish a course? Click here

An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation

109   0   0.0 ( 0 )
 Added by Norbert Heuer
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We develop and analyze an ultraweak variational formulation for a variant of the Kirchhoff-Love plate bending model. Based on this formulation, we introduce a discretization of the discontinuous Petrov-Galerkin type with optimal test functions (DPG). We prove well-posedness of the ultraweak formulation and quasi-optimal convergence of the DPG scheme. The variational formulation and its analysis require tools that control traces and jumps in $H^2$ (standard Sobolev space of scalar functions) and $H(mathrm{div,Div})$ (symmetric tensor functions with $L_2$-components whose twice iterated divergence is in $L_2$), and their dualities. These tools are developed in two and three spatial dimensions. One specific result concerns localized traces in a dense subspace of $H(mathrm{div,Div})$. They are essential to construct basis functions for an approximation of $H(mathrm{div,Div})$. To illustrate the theory we construct basis functions of the lowest order and perform numerical experiments for a smooth and a singular model solution. They confirm the expected convergence behavior of the DPG method both for uniform and adaptively refined meshes.



rate research

Read More

We develop and analyze an ultraweak variational formulation of the Reissner-Mindlin plate bending model both for the clamped and the soft simply supported cases. We prove well-posedness of the formulation, uniformly with respect to the plate thickness $t$. We also prove weak convergence of the Reissner-Mindlin solution to the solution of the corresponding Kirchhoff-Love model when $tto 0$. Based on the ultraweak formulation, we introduce a discretization of the discontinuous Petrov-Galerkin type with optimal test functions (DPG) and prove its uniform quasi-optimal convergence. Our theory covers the case of non-convex polygonal plates. A numerical experiment for some smooth model solutions with fixed load confirms that our scheme is locking free.
We extend the analysis and discretization of the Kirchhoff-Love plate bending problem from [T. Fuhrer, N. Heuer, A.H. Niemi, An ultraweak formulation of the Kirchhoff-Love plate bending model and DPG approximation, arXiv:1805.07835, 2018] in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that includes the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than $L_2$-regular. Numerical results illustrate expected convergence orders.
In this paper, a deep collocation method (DCM) for thin plate bending problems is proposed. This method takes advantage of computational graphs and backpropagation algorithms involved in deep learning. Besides, the proposed DCM is based on a feedforward deep neural network (DNN) and differs from most previous applications of deep learning for mechanical problems. First, batches of randomly distributed collocation points are initially generated inside the domain and along the boundaries. A loss function is built with the aim that the governing partial differential equations (PDEs) of Kirchhoff plate bending problems, and the boundary/initial conditions are minimised at those collocation points. A combination of optimizers is adopted in the backpropagation process to minimize the loss function so as to obtain the optimal hyperparameters. In Kirchhoff plate bending problems, the C1 continuity requirement poses significant difficulties in traditional mesh-based methods. This can be solved by the proposed DCM, which uses a deep neural network to approximate the continuous transversal deflection, and is proved to be suitable to the bending analysis of Kirchhoff plate of various geometries.
We present a comprehensive rotation-free Kirchhoff-Love (KL) shell formulation for peridynamics (PD) that is capable of modeling large elasto-plastic deformations and fracture in thin-walled structures. To remove the need for a predefined global parametric domain, Principal Component Analysis is employed in a meshfree setting to develop a local parameterization of the shell midsurface. The KL shell kinematics is utilized to develop a correspondence-based PD formulation. A bond-stabilization technique is employed to naturally achieve stability of the discrete solution. Only the mid-surface velocity degrees of freedom are used in the governing thin-shell equations. 3D rate-form material models are employed to enable simulating a wide range of material behavior. A bond-associative damage correspondence modeling approach is adopted to use classical failure criteria at the bond level, which readily enables the simulation of brittle and ductile fracture. NAT{Discretizing the model with asymptotically compatible meshfree approximation provides a scheme which converges to the classical KL shell model while providing an accurate and flexible framework for treating fracture.} A wide range of numerical examples, ranging from elastostatics to problems involving plasticity, fracture, and fragmentation, are conducted to validate the accuracy, convergence, and robustness of the developed PD thin-shell formulation. It is also worth noting that the present method naturally enables the discretization of a shell theory requiring higher-order smoothness on a completely unstructured surface mesh.
Stable and accurate modeling of thin shells requires proper enforcement of all types of boundary conditions. Unfortunately, for Kirchhoff-Love shells, strong enforcement of Dirichlet boundary conditions is difficult because both functional and derivative boundary conditions must be applied. A popular alternative is to employ Nitsches method to weakly enforce all boundary conditions. However, while many Nitsche-based formulations have been proposed in the literature, they lack comprehensive error analyses and verifications. In fact, existing formulations are variationally inconsistent and yield sub-optimal convergence rates when used with common boundary condition specifications. In this paper, we present a novel Nitsche-based formulation for the linear Kirchhoff-Love shell that is provably stable and optimally convergent for general sets of admissible boundary conditions. To arrive at our formulation, we first present a framework for constructing Nitsches method for any abstract variational constrained minimization problem. We then apply this framework to the linear Kirchhoff-Love shell and, for the particular case of NURBS-based isogeometric analysis, we prove that the resulting formulation yields optimal convergence rates in both the shell energy norm and the standard $L^2$-norm. In the process, we derive the Euler-Lagrange equations for general sets of admissible boundary conditions and show that the Euler-Lagrange boundary conditions typically presented in the literature is incorrect. We verify our formulation by manufacturing solutions for a new shell obstacle course that encompasses flat, parabolic, hyperbolic, and elliptic geometric configurations. These manufactured solutions allow us to robustly measure the error across the entire shell in contrast with current best practices where displacement and stress errors are only measured at specific locations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا