Do you want to publish a course? Click here

An adaptive multigrid solver for DPG methods with applications in linear acoustics and electromagnetics

68   0   0.0 ( 0 )
 Added by Socratis Petrides
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose an adaptive multigrid preconditioning technology for solving linear systems arising from Discontinuous Petrov-Galerkin (DPG) discretizations. Unlike standard multigrid techniques, this preconditioner involves only trace spaces defined on the mesh skeleton, and it is suitable for adaptive hp-meshes. The key point of the construction is the integration of the iterative solver with a fully automatic and reliable mesh refinement process provided by the DPG technology. The efficacy of the solution technique is showcased with numerous examples of linear acoustics and electromagnetic simulations, including simulations in the high-frequency regime, problems which otherwise would be intractable. Finally, we analyze the one-level preconditioner (smoother) for uniform meshes and we demonstrate that theoretical estimates of the condition number of the preconditioned linear system can be derived based on well established theory for self-adjoint positive definite operators.



rate research

Read More

A nonlinear multigrid solver for two-phase flow and transport in a mixed fractional-flow velocity-pressure-saturation formulation is proposed. The solver, which is under the framework of the full approximation scheme (FAS), extends our previous work on nonlinear multigrid for heterogeneous diffusion problems. The coarse spaces in the multigrid hierarchy are constructed by first aggregating degrees of freedom, and then solving some local flow problems. The mixed formulation and the choice of coarse spaces allow us to assemble the coarse problems without visiting finer levels during the solving phase, which is crucial for the scalability of multigrid methods. Specifically, a natural generalization of the upwind flux can be evaluated directly on coarse levels using the precomputed coarse flux basis vectors. The resulting solver is applicable to problems discretized on general unstructured grids. The performance of the proposed nonlinear multigrid solver in comparison with the standard single level Newtons method is demonstrated through challenging numerical examples. It is observed that the proposed solver is robust for highly nonlinear problems and clearly outperforms Newtons method in the case of high Courant-Friedrichs-Lewy (CFL) numbers.
75 - Zhenning Cai , Yanli Wang 2021
We solve the Boltzmann equation whose collision term is modeled by the hybridization of the binary collision and the BGK approximation. The parameter controlling the ratio of these two collision mechanisms is selected adaptively on every grid cell at every time step. This self-adaptation is based on a heuristic error indicator describing the difference between the model collision term and the original binary collision term. The indicator is derived by controlling the quadratic terms in the modeling error with linear operators. Our numerical experiments show that such error indicator is effective and computationally affordable.
Solving linear systems is a ubiquitous task in science and engineering. Because directly inverting a large-scale linear system can be computationally expensive, iterative algorithms are often used to numerically find the inverse. To accommodate the dynamic range and precision requirements, these iterative algorithms are often carried out on floating-point processing units. Low-precision, fixed-point processors require only a fraction of the energy per operation consumed by their floating-point counterparts, yet their current usages exclude iterative solvers due to the computational errors arising from fixed-point arithmetic. In this work, we show that for a simple iterative algorithm, such as Richardson iteration, using a fixed-point processor can provide the same rate of convergence and achieve high-precision solutions beyond its native precision limit when combined with residual iteration. These results indicate that power-efficient computing platform consisting of analog computing devices can be used to solve a broad range of problems without compromising the speed or precision.
277 - J. Huang , Z. Deng , L. Xu 2021
In this work, we are interested in the determination of the shape of the scatterer for the two dimensional time harmonic inverse medium scattering problems in acoustics. The scatterer is assumed to be a piecewise constant function with a known value inside inhomogeneities, and its shape is represented by the level set functions for which we investigate the information using the Bayesian method. In the Bayesian framework, the solution of the geometric inverse problem is defined as a posterior probability distribution. The well-posedness of the posterior distribution would be discussed, and the Markov chain Monte Carlo (MCMC) methods will be applied to generate samples from the arising posterior distribution. Numerical experiments will be presented to demonstrate the effectiveness of the proposed method.
Given a multigrid procedure for linear systems with coefficient matrices $A_n$, we discuss the optimality of a related multigrid procedure with the same smoother and the same projector, when applied to properly related algebraic problems with coefficient matrices $B_n$: we assume that both $A_n$ and $B_n$ are positive definite with $A_nle vartheta B_n$, for some positive $vartheta$ independent of $n$. In this context we prove the Two-Grid method optimality. We apply this elementary strategy for designing a multigrid solution for modifications of multilevel structured (Toeplitz, circulants, Hartley, sine ($tau$ class) and cosine algebras) linear systems, in which the coefficient matrix is banded in a multilevel sense and Hermitian positive definite. In such a way, several linear systems arising from the approximation of integro-differential equations with various boundary conditions can be efficiently solved in linear time (with respect to the size of the algebraic problem). Some numerical experiments are presented and discussed, both with respect to Two-Grid and multigrid procedures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا