Do you want to publish a course? Click here

Competing (Semi)-Selfish Miners in Bitcoin

76   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The Bitcoin protocol prescribes certain behavior by the miners who are responsible for maintaining and extending the underlying blockchain; in particular, miners who successfully solve a puzzle, and hence can extend the chain by a block, are supposed to release that block immediately. Eyal and Sirer showed, however, that a selfish miner is incentivized to deviate from the protocol and withhold its blocks under certain conditions. The analysis by Eyal and Sirer, as well as in followup work, considers a emph{single} deviating miner (who may control a large fraction of the hashing power in the network) interacting with a remaining pool of honest miners. Here, we extend this analysis to the case where there are emph{multiple} (non-colluding) selfish miners. We find that with multiple strategic miners, specific deviations from honest mining by multiple strategic agents can outperform honest mining, even if individually miners would not be incentivised to be dishonest. This previous point effectively renders the Bitcoin protocol to be less secure than previously thought.



rate research

Read More

Background: During the last years, there has been a lot of discussion and estimations on the energy consumption of Bitcoin miners. However, most of the studies are focused on estimating energy consumption, not in exploring the factors that determine it. Goal: To explore the factors that determine maximum energy consumption of Bitcoin miners. In particular, analyze the limits of energy consumption, and to which extent variations of the factors could produce its reduction. Method: Estimate the overall profit of all Bitcoin miners during a certain period of time, and the costs (including energy) that they face during that time, because of the mining activity. The underlying assumptions is that miners will only consume energy to mine Bitcoin if they have the expectation of profit, and at the same time they are competitive with respect of each other. Therefore, they will operate as a group in the point where profits balance expenditures. Results: We show a basic equation that determines energy consumption based on some specific factors: minting, transaction fees, exchange rate, energy price, and amortization cost. We also define the Amortization Factor, which can be computed for mining devices based on their cost and energy consumption, helps to understand how the cost of equipment influences total energy consumption. Conclusions: The factors driving energy consumption are identified, and from them, some ways in which Bitcoin energy consumption could be reduced are discussed. Some of these ways do not reduce the most important properties of Bitcoin, such as the chances of control of the aggregated hashpower, or the fundamentals of the proof of work mechanism. In general, the methods presented can help to predict energy consumption in different scenarios, based on factors that can be calculated from available data, or assumed in scenarios.
143 - Pablo Azar , Shafi Goldwasser , 2016
The availability of vast amounts of data is changing how we can make medical discoveries, predict global market trends, save energy, and develop educational strategies. In some settings such as Genome Wide Association Studies or deep learning, sheer size of data seems critical. When data is held distributedly by many parties, they must share it to reap its full benefits. One obstacle to this revolution is the lack of willingness of different parties to share data, due to reasons such as loss of privacy or competitive edge. Cryptographic works address privacy aspects, but shed no light on individual parties losses/gains when access to data carries tangible rewards. Even if it is clear that better overall conclusions can be drawn from collaboration, are individual collaborators better off by collaborating? Addressing this question is the topic of this paper. * We formalize a model of n-party collaboration for computing functions over private inputs in which participants receive their outputs in sequence, and the order depends on their private inputs. Each output improves on preceding outputs according to a score function. * We say a mechanism for collaboration achieves collaborative equilibrium if it ensures higher reward for all participants when collaborating (rather than working alone). We show that in general, computing a collaborative equilibrium is NP-complete, yet we design efficient algorithms to compute it in a range of natural model settings. Our collaboration mechanisms are in the standard model, and thus require a central trusted party; however, we show this assumption is unnecessary under standard cryptographic assumptions. We show how to implement the mechanisms in a decentralized way with new extensions of secure multiparty computation that impose order/timing constraints on output delivery to different players, as well as privacy and correctness.
We study a class of games which model the competition among agents to access some service provided by distributed service units and which exhibit congestion and frustration phenomena when service units have limited capacity. We propose a technique, based on the cavity method of statistical physics, to characterize the full spectrum of Nash equilibria of the game. The analysis reveals a large variety of equilibria, with very different statistical properties. Natural selfish dynamics, such as best-response, usually tend to large-utility equilibria, even though those of smaller utility are exponentially more numerous. Interestingly, the latter actually can be reached by selecting the initial conditions of the best-response dynamics close to the saturation limit of the service unit capacities. We also study a more realistic stochastic variant of the game by means of a simple and effective approximation of the average over the random parameters, showing that the properties of the average-case Nash equilibria are qualitatively similar to the deterministic ones.
We study the outcome of deferred acceptance when prospective medical residents can only apply to a limited set of hospitals. This limitation requires residents to make a strategic choice about the quality of hospitals they apply to. Through a mix of theoretical and experimental results, we study the effect of this strategic choice on the preferences submitted by participants, as well as on the overall welfare. We find that residents choices in our model mimic the behavior observed in real systems where individuals apply to a mix of positions consisting mostly of places where they are reasonably likely to get accepted, as well as a few reach applications to hospitals of very high quality, and a few safe applications to hospitals of lower than their expected level. Surprisingly, the number of such safe applications is not monotone in the number of allowed applications. We also find that selfish behavior can hurt social welfare, but the deterioration of overall welfare is very minimal.
Investors tend to sell their winning investments and hold onto their losers. This phenomenon, known as the emph{disposition effect} in the field of behavioural finance, is well-known and its prevalence has been shown in a number of existing markets. But what about new atypical markets like cryptocurrencies? Do investors act as irrationally as in traditional markets? One might suspect this and hypothesise that cryptocurrency sells occur more frequently in positive market conditions and less frequently in negative market conditions. However, there is still no empirical evidence to support this. In this paper, we expand on existing research and empirically investigate the prevalence of the disposition effect in Bitcoin by testing this hypothesis. Our results show that investors are indeed subject to the disposition effect, tending to sell their winning positions too soon and holding on to their losing position for too long. This effect is very prominently evident from the boom and bust year 2017 onwards, confirmed via most of the applied technical indicators. In this study, we show that Bitcoin traders act just as irrationally as traders in other, more established markets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا