Do you want to publish a course? Click here

Impact of temporal connectivity patterns on epidemic process

81   0   0.0 ( 0 )
 Added by Meesoon Ha
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

To provide a comprehensive view for dynamics of and on many real-world temporal networks, we investigate the interplay of temporal connectivity patterns and spreading phenomena, in terms of the susceptible-infected-removed (SIR) model on the modified activity-driven temporal network (ADTN) with memory. In particular, we focus on how the epidemic threshold of the SIR model is affected by the heterogeneity of nodal activities and the memory strength in temporal and static regimes, respectively. While strong ties (memory) between nodes inhibit the spread of epidemic to be localized, the heterogeneity of nodal activities enhances it to be globalized initially. Since the epidemic threshold of the SIR model is very sensitive to the degree distribution of nodes in static networks, we test the SIR model on the modified ADTNs with the possible set of the activity exponents and the memory exponents that generates the same degree distributions in temporal networks. We also discuss the role of spatiotemporal scaling properties of the largest cluster and the maximum degree in the epidemic threshold. It is observed that the presence of highly active nodes enables to trigger the initial spread of epidemic in a short period of time, but it also limits its final spread to the entire network. This implies that there is the trade-off between the spreading time of epidemic and its outbreak size. Finally, we suggest the phase diagram of the SIR model on ADTNs and the optimal condition for the spread of epidemic under the circumstances.



rate research

Read More

Most previous studies of epidemic dynamics on complex networks suppose that the disease will eventually stabilize at either a disease-free state or an endemic one. In reality, however, some epidemics always exhibit sporadic and recurrent behaviour in one region because of the invasion from an endemic population elsewhere. In this paper we address this issue and study a susceptible-infected-susceptible epidemiological model on a network consisting of two communities, where the disease is endemic in one community but alternates between outbreaks and extinctions in the other. We provide a detailed characterization of the temporal dynamics of epidemic patterns in the latter community. In particular, we investigate the time duration of both outbreak and extinction, and the time interval between two consecutive inter-community infections, as well as their frequency distributions. Based on the mean-field theory, we theoretically analyze these three timescales and their dependence on the average node degree of each community, the transmission parameters, and the number of intercommunity links, which are in good agreement with simulations, except when the probability of overlaps between successive outbreaks is too large. These findings aid us in better understanding the bursty nature of disease spreading in a local community, and thereby suggesting effective time-dependent control strategies.
The study of SIS epidemics on networks has stressed the role of the network topology on the spreading process. However, accurate models of SIS epidemics rely on the complete knowledge of the network topology, which is often not available. This paper tackles the problem of inferring the network topology from observed infection time traces, especially where the network topology is partially known or known with some uncertainty. We propose a Bayesian method to infer the posterior probability of uncertain links in the network, and we derive closed form equations for these probabilities. We also propose a numerical approach based on a Gibbs sampling when the number of uncertain links is large such that using the closed form equations becomes impractical. Numerical results show the capability of the proposed approach to assign high probability to existing links and low probability to non-existing links of the network when the SIS traces are sufficiently long.
In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of power grids. First, we propose a new index for the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs in a short time-scale is as weak as that caused by independent random variables and that in a long time-scale is as strong as that under perfect synchronization. Then, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model and the result shows that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our result suggests that the spatial correlation of the renewable energy outputs should be taken into account when estimating the stability of power grids.
The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.
We consider inventions as novel combinations of existing technological capabilities. Patent data allow us to explicitly identify such combinatorial processes in invention activities. Unconsidered in the previous research, not every new combination is novel to the same extent. Some combinations are naturally anticipated based on patent activities in the past or mere random choices, and some appear to deviate exceptionally from existing invention pathways. We calculate a relative likelihood that each pair of classification codes is put together at random, and a deviation from the empirical observation so as to assess the overall novelty (or conventionality) that the patent brings forth at each year. An invention is considered as unconventional if a pair of codes therein is unlikely to be used together given the statistics in the past. Temporal evolution of the distribution indicates that the patenting activities become more conventional with occasional cross-over combinations. Our analyses show that patents introducing novelty on top of the conventional units would receive higher citations, and hence have higher impact.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا