Do you want to publish a course? Click here

Learning to reinforcement learn

422   0   0.0 ( 0 )
 Added by Jane Wang
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

In recent years deep reinforcement learning (RL) systems have attained superhuman performance in a number of challenging task domains. However, a major limitation of such applications is their demand for massive amounts of training data. A critical present objective is thus to develop deep RL methods that can adapt rapidly to new tasks. In the present work we introduce a novel approach to this challenge, which we refer to as deep meta-reinforcement learning. Previous work has shown that recurrent networks can support meta-learning in a fully supervised context. We extend this approach to the RL setting. What emerges is a system that is trained using one RL algorithm, but whose recurrent dynamics implement a second, quite separate RL procedure. This second, learned RL algorithm can differ from the original one in arbitrary ways. Importantly, because it is learned, it is configured to exploit structure in the training domain. We unpack these points in a series of seven proof-of-concept experiments, each of which examines a key aspect of deep meta-RL. We consider prospects for extending and scaling up the approach, and also point out some potentially important implications for neuroscience.

rate research

Read More

We propose ScheduleNet, a RL-based real-time scheduler, that can solve various types of multi-agent scheduling problems. We formulate these problems as a semi-MDP with episodic reward (makespan) and learn ScheduleNet, a decentralized decision-making policy that can effectively coordinate multiple agents to complete tasks. The decision making procedure of ScheduleNet includes: (1) representing the state of a scheduling problem with the agent-task graph, (2) extracting node embeddings for agent and tasks nodes, the important relational information among agents and tasks, by employing the type-aware graph attention (TGA), and (3) computing the assignment probability with the computed node embeddings. We validate the effectiveness of ScheduleNet as a general learning-based scheduler for solving various types of multi-agent scheduling tasks, including multiple salesman traveling problem (mTSP) and job shop scheduling problem (JSP).
Learning how to act when there are many available actions in each state is a challenging task for Reinforcement Learning (RL) agents, especially when many of the actions are redundant or irrelevant. In such cases, it is sometimes easier to learn which actions not to take. In this work, we propose the Action-Elimination Deep Q-Network (AE-DQN) architecture that combines a Deep RL algorithm with an Action Elimination Network (AEN) that eliminates sub-optimal actions. The AEN is trained to predict invalid actions, supervised by an external elimination signal provided by the environment. Simulations demonstrate a considerable speedup and added robustness over vanilla DQN in text-based games with over a thousand discrete actions.
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine. Thus, deep RL opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This manuscript provides an introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. We assume the reader is familiar with basic machine learning concepts.
Offline reinforcement learning (RL) defines the task of learning from a fixed batch of data. Due to errors in value estimation from out-of-distribution actions, most offline RL algorithms take the approach of constraining or regularizing the policy with the actions contained in the dataset. Built on pre-existing RL algorithms, modifications to make an RL algorithm work offline comes at the cost of additional complexity. Offline RL algorithms introduce new hyperparameters and often leverage secondary components such as generative models, while adjusting the underlying RL algorithm. In this paper we aim to make a deep RL algorithm work while making minimal changes. We find that we can match the performance of state-of-the-art offline RL algorithms by simply adding a behavior cloning term to the policy update of an online RL algorithm and normalizing the data. The resulting algorithm is a simple to implement and tune baseline, while more than halving the overall run time by removing the additional computational overheads of previous methods.
We examine the question of when and how parametric models are most useful in reinforcement learning. In particular, we look at commonalities and differences between parametric models and experience replay. Replay-based learning algorithms share important traits with model-based approaches, including the ability to plan: to use more computation without additional data to improve predictions and behaviour. We discuss when to expect benefits from either approach, and interpret prior work in this context. We hypothesise that, under suitable conditions, replay-based algorithms should be competitive to or better than model-based algorithms if the model is used only to generate fictional transitions from observed states for an update rule that is otherwise model-free. We validated this hypothesis on Atari 2600 video games. The replay-based algorithm attained state-of-the-art data efficiency, improving over prior results with parametric models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا