We consider thermal phases of holographic lattices at finite chemical potential in which a continuous internal bulk symmetry can be spontaneously broken. In the normal phase, translational symmetry is explicitly broken by the lattice and the only conserved quantities are related to time translations and the electric charge. The long wavelength excitations of the corresponding charge densities are described by incoherent hydrodynamics yielding two perturbative modes which are diffusive. In the broken phase an additional hydrodynamic degree of freedom couples to the local chemical potential and temperature and we write an effective theory describing the coupled system at leading order in a derivative expansion.
We use holography to derive effective theories of fluctuations in spontaneously broken phases of systems with finite temperature, chemical potential, magnetic field and momentum relaxation in which the order parameters break translations. We analytically construct the hydrodynamic modes corresponding to the coupled thermoelectric and density wave fluctuations and all of them turn out to be purely diffusive for our system. Upon introducing pinning for the density waves, some of these modes acquire not only a gap, but also a finite resonance due to the magnetic field. Finally, we study the optical properties and perform numerical checks of our analytical results. A crucial byproduct of our analysis is the identification of the correct current which describes the transport of heat in our system.
We formulate a theory of dissipative hydrodynamics with spontaneously broken translations, describing charge density waves in a clean isotropic electronic crystal. We identify a novel linear transport coefficient, lattice pressure, capturing the effects of background strain and thermal expansion in a crystal. We argue that lattice pressure is a generic feature of systems with spontaneously broken translations and must be accounted for while building and interpreting holographic models. We also provide the first calculation of the coefficients of thermal and chemical expansion in a holographic electronic crystal.
We study the phenomenon of additional light waves (ALWs), observed in crystal optics: two or more electromagnetic waves with the same polarization, but different refractive index, propagate simultaneously in a isotropic medium. We show that ALWs are common in relativistic hydrodynamics, and in particular in strongly coupled systems that admit a dual gravitational description, where the ALWs are dual to quasi normal modes in the AdS gravity. We study both the transverse and the longitudinal light wave propagation. In the longitudinal channel we find a transition between regimes with different number of excitonic resonances which resembles the transition to standard optics observed in crystals.
We consider transport of heat and charge in holographic lattices which are phases of strongly coupled matter in which translations are broken explicitly. In these systems, we study a spontaneous density wave that breaks translations incommensurately to the lattice. The emergent gapless mode due to symmetry breaking couples to the heat current impacting transport at low frequencies. We study the effects of this coupling when the mode is freely sliding as well as after the introduction of a small deformation parameter which pins down the density wave. We prove that the DC transport coefficients are discontinuous in the limit of the pinning parameter going to zero. From the perspective of finite frequency thermoelectric conductivity, this limiting process is accompanied by the transfer of spectral weight to frequencies set by the pinning parameter. As expected, for weak momentum relaxation, this spectral weight transfer appears as a shift of the Drude peak.
We study the transport coefficients of Quark-Gluon-Plasma in finite temperature and finite baryon density. We use AdS/QCD of charged AdS black hole background with bulk-filling branes identifying the U(1) charge as the baryon number. We calculate the diffusion constant, the shear viscosity and the thermal conductivity to plot their density and temperature dependences. Hydrodynamic relations between those are shown to hold exactly. The diffusion constant and the shear viscosity are decreasing as a function of density for fixed total energy. For fixed temperature, the fluid becomes less diffusible and more viscous for larger baryon density.