Do you want to publish a course? Click here

Additional Light Waves in Hydrodynamics and Holography

137   0   0.0 ( 0 )
 Added by Antonio Amariti
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the phenomenon of additional light waves (ALWs), observed in crystal optics: two or more electromagnetic waves with the same polarization, but different refractive index, propagate simultaneously in a isotropic medium. We show that ALWs are common in relativistic hydrodynamics, and in particular in strongly coupled systems that admit a dual gravitational description, where the ALWs are dual to quasi normal modes in the AdS gravity. We study both the transverse and the longitudinal light wave propagation. In the longitudinal channel we find a transition between regimes with different number of excitonic resonances which resembles the transition to standard optics observed in crystals.



rate research

Read More

159 - Jay Armas , Akash Jain 2019
We formulate the theory of nonlinear viscoelastic hydrodynamics of anisotropic crystals in terms of dynamical Goldstone scalars of spontaneously broken translational symmetries, under the assumption of homogeneous lattices and absence of plastic deformations. We reformulate classical elasticity effective field theory using surface calculus in which the Goldstone scalars naturally define the position of higher-dimensional crystal cores, covering both elastic and smectic crystal phases. We systematically incorporate all dissipative effects in viscoelastic hydrodynamics at first order in a long-wavelength expansion and study the resulting rheology equations. In the process, we find the necessary conditions for equilibrium states of viscoelastic materials. In the linear regime and for isotropic crystals, the theory includes the description of Kelvin-Voigt materials. Furthermore, we provide an entirely equivalent description of viscoelastic hydrodynamics as a novel theory of higher-form superfluids in arbitrary dimensions where the Goldstone scalars of partially broken generalised global symmetries play an essential role. An exact map between the two formulations of viscoelastic hydrodynamics is given. Finally, we study holographic models dual to both these formulations and map them one-to-one via a careful analysis of boundary conditions. We propose a new simple holographic model of viscoelastic hydrodynamics by adopting an alternative quantisation for the scalar fields.
We study the mechanisms setting the radius of convergence of hydrodynamic dispersion relations in kinetic theory in the relaxation time approximation. This introduces a qualitatively new feature with respect to holography: a nonhydrodynamic sector represented by a branch cut in the retarded Greens function. In contrast with existing holographic examples, we find that the radius of convergence in the shear channel is set by a collision of the hydrodynamic pole with a branch point. In the sound channel it is set by a pole-pole collision on a non-principal sheet of the Greens function. More generally, we examine the consequences of the Implicit Function Theorem in hydrodynamics and give a prescription to determine a set of points that necessarily includes all complex singularities of the dispersion relation. This may be used as a practical tool to assist in determining the radius of convergence of hydrodynamic dispersion relations.
We argue that a $SO(d)$ magnetic monopole in an asymptotically AdS space-time is dual to a $d$-dimensional strongly coupled system in a solid state. In light of this, it would be remiss of us not to dub such a field configuration $solidon$. In the presence of mixed boundary conditions, a solidon spontaneously breaks translations (among many other symmetries) and gives rise to Goldstone excitations on the boundary$-$the phonons of the solid. We derive the quadratic action for the boundary phonons in the probe limit and show that, when the mixed boundary conditions preserve conformal symmetry, the longitudinal and transverse sound speeds are related to each other as expected from effective field theory arguments. We then include backreaction and calculate the free energy of the solidon for a particular choice of mixed boundary conditions, corresponding to a relevant multi-trace deformation of the boundary theory. We find such free energy to be lower than that of thermal AdS. This suggests that our solidon undergoes a solid-to-liquid first order phase transition by melting into a Schwarzschild-AdS black hole as the temperature is raised.
95 - Yan Liu , Ya-Wen Sun 2020
We study topological gapless modes in relativistic hydrodynamics by weakly breaking the conservation of energy momentum tensor. Several systems have been found to have topologically nontrivial crossing nodes in the spectrum of hydrodynamic modes and some of them are only topologically nontrivial with the protection of certain spacetime symmetries. The nontrivial topology for all these systems is further confirmed from the existence of undetermined Berry phases. Associated transport properties and second order effects have also been studied for these systems. The non-conservation terms of the energy momentum tensor could come from an external effective symmetric tensor matter field or a gravitational field which could be generated by a specific coordinate transformation from the flat spacetime. Finally we introduce a possible holographic realization of one of these systems. We propose a new method to calculate the holographic Ward identities for the energy momentum tensor without calculating out all components of the Green functions and match the Ward identities of both sides.
We consider thermal phases of holographic lattices at finite chemical potential in which a continuous internal bulk symmetry can be spontaneously broken. In the normal phase, translational symmetry is explicitly broken by the lattice and the only conserved quantities are related to time translations and the electric charge. The long wavelength excitations of the corresponding charge densities are described by incoherent hydrodynamics yielding two perturbative modes which are diffusive. In the broken phase an additional hydrodynamic degree of freedom couples to the local chemical potential and temperature and we write an effective theory describing the coupled system at leading order in a derivative expansion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا