No Arabic abstract
The reservoir computing neural network architecture is widely used to test hardware systems for neuromorphic computing. One of the preferred tasks for bench-marking such devices is automatic speech recognition. However, this task requires acoustic transformations from sound waveforms with varying amplitudes to frequency domain maps that can be seen as feature extraction techniques. Depending on the conversion method, these may obscure the contribution of the neuromorphic hardware to the overall speech recognition performance. Here, we quantify and separate the contributions of the acoustic transformations and the neuromorphic hardware to the speech recognition success rate. We show that the non-linearity in the acoustic transformation plays a critical role in feature extraction. We compute the gain in word success rate provided by a reservoir computing device compared to the acoustic transformation only, and show that it is an appropriate benchmark for comparing different hardware. Finally, we experimentally and numerically quantify the impact of the different acoustic transformations for neuromorphic hardware based on magnetic nano-oscillators.
The task of speech recognition in far-field environments is adversely affected by the reverberant artifacts that elicit as the temporal smearing of the sub-band envelopes. In this paper, we develop a neural model for speech dereverberation using the long-term sub-band envelopes of speech. The sub-band envelopes are derived using frequency domain linear prediction (FDLP) which performs an autoregressive estimation of the Hilbert envelopes. The neural dereverberation model estimates the envelope gain which when applied to reverberant signals suppresses the late reflection components in the far-field signal. The dereverberated envelopes are used for feature extraction in speech recognition. Further, the sequence of steps involved in envelope dereverberation, feature extraction and acoustic modeling for ASR can be implemented as a single neural processing pipeline which allows the joint learning of the dereverberation network and the acoustic model. Several experiments are performed on the REVERB challenge dataset, CHiME-3 dataset and VOiCES dataset. In these experiments, the joint learning of envelope dereverberation and acoustic model yields significant performance improvements over the baseline ASR system based on log-mel spectrogram as well as other past approaches for dereverberation (average relative improvements of 10-24% over the baseline system). A detailed analysis on the choice of hyper-parameters and the cost function involved in envelope dereverberation is also provided.
This paper is focused on the finetuning of acoustic models for speaker adaptation goals on a given gender. We pretrained the Transformer baseline model on Librispeech-960 and conduct experiments with finetuning on the gender-specific test subsets and. In general, we do not obtain essential WER reduction by finetuning techniques by this approach. We achieved up to ~5% lower word error rate on the male subset and 3% on the female subset if the layers in the encoder and decoder are not frozen, but the tuning is started from the last checkpoints. Moreover, we adapted our base model on the full L2 Arctic dataset of accented speech and fine-tuned it for particular speakers and male and female genders separately. The models trained on the gender subsets obtained 1-2% higher accuracy when compared to the model tuned on the whole L2 Arctic dataset. Finally, we tested the concatenation of the pretrained x-vector voice embeddings and embeddings from a conventional encoder, but its gain in accuracy is not significant.
Automatic speech recognition in reverberant conditions is a challenging task as the long-term envelopes of the reverberant speech are temporally smeared. In this paper, we propose a neural model for enhancement of sub-band temporal envelopes for dereverberation of speech. The temporal envelopes are derived using the autoregressive modeling framework of frequency domain linear prediction (FDLP). The neural enhancement model proposed in this paper performs an envelop gain based enhancement of temporal envelopes and it consists of a series of convolutional and recurrent neural network layers. The enhanced sub-band envelopes are used to generate features for automatic speech recognition (ASR). The ASR experiments are performed on the REVERB challenge dataset as well as the CHiME-3 dataset. In these experiments, the proposed neural enhancement approach provides significant improvements over a baseline ASR system with beamformed audio (average relative improvements of 21% on the development set and about 11% on the evaluation set in word error rates for REVERB challenge dataset).
Automatic recognition of disordered speech remains a highly challenging task to date. The underlying neuro-motor conditions, often compounded with co-occurring physical disabilities, lead to the difficulty in collecting large quantities of impaired speech required for ASR system development. To this end, data augmentation techniques play a vital role in current disordered speech recognition systems. In contrast to existing data augmentation techniques only modifying the speaking rate or overall shape of spectral contour, fine-grained spectro-temporal differences between disordered and normal speech are modelled using deep convolutional generative adversarial networks (DCGAN) during data augmentation to modify normal speech spectra into those closer to disordered speech. Experiments conducted on the UASpeech corpus suggest the proposed adversarial data augmentation approach consistently outperformed the baseline augmentation methods using tempo or speed perturbation on a state-of-the-art hybrid DNN system. An overall word error rate (WER) reduction up to 3.05% (9.7% relative) was obtained over the baseline system using no data augmentation. The final learning hidden unit contribution (LHUC) speaker adapted system using the best adversarial augmentation approach gives an overall WER of 25.89% on the UASpeech test set of 16 dysarthric speakers.
Recently, self-supervised pre-training has gained success in automatic speech recognition (ASR). However, considering the difference between speech accents in real scenarios, how to identify accents and use accent features to improve ASR is still challenging. In this paper, we employ the self-supervised pre-training method for both accent identification and accented speech recognition tasks. For the former task, a standard deviation constraint loss (SDC-loss) based end-to-end (E2E) architecture is proposed to identify accents under the same language. As for accented speech recognition task, we design an accent-dependent ASR system, which can utilize additional accent input features. Furthermore, we propose a frame-level accent feature, which is extracted based on the proposed accent identification model and can be dynamically adjusted. We pre-train our models using 960 hours unlabeled LibriSpeech dataset and fine-tune them on AESRC2020 speech dataset. The experimental results show that our proposed accent-dependent ASR system is significantly ahead of the AESRC2020 baseline and achieves $6.5%$ relative word error rate (WER) reduction compared with our accent-independent ASR system.