No Arabic abstract
Automatic speech recognition in reverberant conditions is a challenging task as the long-term envelopes of the reverberant speech are temporally smeared. In this paper, we propose a neural model for enhancement of sub-band temporal envelopes for dereverberation of speech. The temporal envelopes are derived using the autoregressive modeling framework of frequency domain linear prediction (FDLP). The neural enhancement model proposed in this paper performs an envelop gain based enhancement of temporal envelopes and it consists of a series of convolutional and recurrent neural network layers. The enhanced sub-band envelopes are used to generate features for automatic speech recognition (ASR). The ASR experiments are performed on the REVERB challenge dataset as well as the CHiME-3 dataset. In these experiments, the proposed neural enhancement approach provides significant improvements over a baseline ASR system with beamformed audio (average relative improvements of 21% on the development set and about 11% on the evaluation set in word error rates for REVERB challenge dataset).
The task of speech recognition in far-field environments is adversely affected by the reverberant artifacts that elicit as the temporal smearing of the sub-band envelopes. In this paper, we develop a neural model for speech dereverberation using the long-term sub-band envelopes of speech. The sub-band envelopes are derived using frequency domain linear prediction (FDLP) which performs an autoregressive estimation of the Hilbert envelopes. The neural dereverberation model estimates the envelope gain which when applied to reverberant signals suppresses the late reflection components in the far-field signal. The dereverberated envelopes are used for feature extraction in speech recognition. Further, the sequence of steps involved in envelope dereverberation, feature extraction and acoustic modeling for ASR can be implemented as a single neural processing pipeline which allows the joint learning of the dereverberation network and the acoustic model. Several experiments are performed on the REVERB challenge dataset, CHiME-3 dataset and VOiCES dataset. In these experiments, the joint learning of envelope dereverberation and acoustic model yields significant performance improvements over the baseline ASR system based on log-mel spectrogram as well as other past approaches for dereverberation (average relative improvements of 10-24% over the baseline system). A detailed analysis on the choice of hyper-parameters and the cost function involved in envelope dereverberation is also provided.
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic speech recognition (ASR) system. If the target is to minimize the recognition error, the recognition results should be used to design the objective function for optimizing the SE model. However, the structure of an ASR system, which consists of multiple units, such as acoustic and language models, is usually complex and not differentiable. In this study, we proposed to adopt the reinforcement learning algorithm to optimize the SE model based on the recognition results. We evaluated the propsoed SE system on the Mandarin Chinese broadcast news corpus (MATBN). Experimental results demonstrate that the proposed method can effectively improve the ASR results with a notable 12.40% and 19.23% error rate reductions for signal to noise ratio at 0 dB and 5 dB conditions, respectively.
Despite the widespread utilization of deep neural networks (DNNs) for speech emotion recognition (SER), they are severely restricted due to the paucity of labeled data for training. Recently, segment-based approaches for SER have been evolving, which train backbone networks on shorter segments instead of whole utterances, and thus naturally augments training examples without additional resources. However, one core challenge remains for segment-based approaches: most emotional corpora do not provide ground-truth labels at the segment level. To supervisely train a segment-based emotion model on such datasets, the most common way assigns each segment the corresponding utterances emotion label. However, this practice typically introduces noisy (incorrect) labels as emotional information is not uniformly distributed across the whole utterance. On the other hand, DNNs have been shown to easily over-fit a dataset when being trained with noisy labels. To this end, this work proposes a simple and effective deep self-learning (DSL) framework, which comprises a procedure to progressively correct segment-level labels in an iterative learning manner. The DSL method produces dynamically-generated and soft emotion labels, leading to significant performance improvements. Experiments on three well-known emotional corpora demonstrate noticeable gains using the proposed method.
Despite successful applications of end-to-end approaches in multi-channel speech recognition, the performance still degrades severely when the speech is corrupted by reverberation. In this paper, we integrate the dereverberation module into the end-to-end multi-channel speech recognition system and explore two different frontend architectures. First, a multi-source mask-based weighted prediction error (WPE) module is incorporated in the frontend for dereverberation. Second, another novel frontend architecture is proposed, which extends the weighted power minimization distortionless response (WPD) convolutional beamformer to perform simultaneous separation and dereverberation. We derive a new formulation from the original WPD, which can handle multi-source input, and replace eigenvalue decomposition with the matrix inverse operation to make the back-propagation algorithm more stable. The above two architectures are optimized in a fully end-to-end manner, only using the speech recognition criterion. Experiments on both spatialized wsj1-2mix corpus and REVERB show that our proposed model outperformed the conventional methods in reverberant scenarios.
The reliability of using fully convolutional networks (FCNs) has been successfully demonstrated by recent studies in many speech applications. One of the most popular variants of these FCNs is the `U-Net, which is an encoder-decoder network with skip connections. In this study, we propose `SkipConvNet where we replace each skip connection with multiple convolutional modules to provide decoder with intuitive feature maps rather than encoders output to improve the learning capacity of the network. We also propose the use of optimal smoothing of power spectral density (PSD) as a pre-processing step, which helps to further enhance the efficiency of the network. To evaluate our proposed system, we use the REVERB challenge corpus to assess the performance of various enhancement approaches under the same conditions. We focus solely on monitoring improvements in speech quality and their contribution to improving the efficiency of back-end speech systems, such as speech recognition and speaker verification, trained on only clean speech. Experimental findings show that the proposed system consistently outperforms other approaches.