No Arabic abstract
Nodal line in single-component molecular conductor [Pd(dddt)_2] has been examined to understand the tilted Dirac cone on the non-coplanar loop. In the previous work [J. Phys. Soc. Jpn. 87, 113701 (2018)], the velocity of the cone was calculated at respective Dirac points on the nodal loop based on our first-principles band structure calculations, which was a new method to derive an effective Hamiltonian with a 2 x 2 matrix. However, the Dirac cones on the nodal line are fully reproduced only at symmetric points. In the present paper, we show that our improved method well reproduces reasonable behaviors of all the Dirac cones and a very small energy dispersion of 6~meV among the Dirac points. The variation of velocities along the nodal line are shown by using principal axes of the gap function between the conduction and valence bands. Further, the density of states close to the chemical potential and orbital magnetic susceptibility are calculated using such an effective Hamiltonian.
The enchanting Dirac fermions in graphene stimulated us to seek for other two-dimensional (2D) Dirac materials, and boron monolayers may be a good candidate. So far, a number of monolayer boron sheets have been theoretically predicted, and three have been experimentally prepared. However, none of them possesses Dirac electrons. Herein, by means of density functional theory (DFT) computations, we identified a new boron monolayer, namely hr-sB, with two types of Dirac fermions coexisting in the sheet: one type is related to Dirac nodal lines traversing Brillouin zone (BZ) with velocities approaching 106 m/s, the other is related to tilted semi-Dirac cones with strong anisotropy. This newly predicted boron monolayer consists of hexagon and rhombus stripes. With an exceptional stability comparable to the experimentally achieved boron sheets, it is rather optimistic to grow hr-sB on some suitable substrates such as the Ag (111) surface. The unique electronic properties induced by special bond characteristics also imply that this boron monolayer may be a good superconductor.
We study the effects of pseudo-magnetic fields on Weyl semimetals with over-tilted Weyl cones, or type II cones. We compare the phenomenology of the resulting pseudo-Landau levels in the type II Weyl semimetal to the known case of type I cones. We predict that due to the nature of the chiral Landau level resulting from a magnetic field, a pseudo-magnetic field, or their combination, the optical conductivity can be utilized to detect a type II phase and deduce the direction of the tilt. Finally, we discuss ways to engineer homogeneous and inhomogeneous type II semimetals via generalizations of known layered constructions in order to create controlled pseudo-magnetic fields and over-tilted cones.
The opening of a gap in single-layer graphene is often ascribed to the breaking of the equivalence between the two carbon sublattices. We show by angle-resolved photoemission spectroscopy that Ir- and Na-modified graphene grown on the Ir(111) surface presents a very large unconventional gap that can be described in terms of a phenomenological massless Dirac model. We discuss the consequences and differences of this model in comparison of the standard massive gap model, and we investigate the conditions under which such anomalous gap can arise from a spontaneous symmetry breaking.
We investigate a generalized two-dimensional Weyl Hamiltonian, which may describe the low-energy properties of mechanically deformed graphene and of the organic compound alpha-(BEDT-TTF)_2I_3 under pressure. The associated dispersion has generically the form of tilted anisotropic Dirac cones. The tilt arises due to next-nearest-neighbor hopping when the Dirac points, where the valence band touches the conduction band, do not coincide with crystallographic high-symmetry points within the first Brillouin zone. Within a semiclassical treatment, we describe the formation of Landau levels in a strong magnetic field, the relativistic form of which is reminiscent to that of graphene, with a renormalized Fermi velocity due to the tilt of the Dirac cones. These relativistic Landau levels, experimentally accessible via spectroscopy or even a quantum Hall effect measurement, may be used as a direct experimental verification of Dirac cones in alpha-(BEDT-TTF)_2I_3.
Non-Hermitian systems, which contain gain or loss, commonly host exceptional point degeneracies rather than the diabolic points found in Hermitian systems. We present a class of non-Hermitian lattice models with symmetry-stabilized diabolic points, such as Dirac or Weyl points. They exhibit non-Hermiticity-induced phenomena previously existing in the Hermitian regime, including topological phase transitions, Landau levels induced by pseudo-magnetic fields, and Fermi arc surface states. These behaviors are controllable via gain and loss, with promising applications in tunable active topological devices.