Do you want to publish a course? Click here

Learning to Rank for Plausible Plausibility

116   0   0.0 ( 0 )
 Added by Zhongyang Li
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Researchers illustrate improvements in contextual encoding strategies via resultant performance on a battery of shared Natural Language Understanding (NLU) tasks. Many of these tasks are of a categorical prediction variety: given a conditioning context (e.g., an NLI premise), provide a label based on an associated prompt (e.g., an NLI hypothesis). The categorical nature of these tasks has led to common use of a cross entropy log-loss objective during training. We suggest this loss is intuitively wrong when applied to plausibility tasks, where the prompt by design is neither categorically entailed nor contradictory given the context. Log-loss naturally drives models to assign scores near 0.0 or 1.0, in contrast to our proposed use of a margin-based loss. Following a discussion of our intuition, we describe a confirmation study based on an extreme, synthetically curated task derived from MultiNLI. We find that a margin-based loss leads to a more plausible model of plausibility. Finally, we illustrate improvements on the Choice Of Plausible Alternative (COPA) task through this change in loss.



rate research

Read More

We propose a novel method for hierarchical entity classification that embraces ontological structure at both training and during prediction. At training, our novel multi-level learning-to-rank loss compares positive types against negative siblings according to the type tree. During prediction, we define a coarse-to-fine decoder that restricts viable candidates at each level of the ontology based on already predicted parent type(s). We achieve state-of-the-art across multiple datasets, particularly with respect to strict accuracy.
Understanding natural language requires common sense, one aspect of which is the ability to discern the plausibility of events. While distributional models -- most recently pre-trained, Transformer language models -- have demonstrated improvements in modeling event plausibility, their performance still falls short of humans. In this work, we show that Transformer-based plausibility models are markedly inconsistent across the conceptual classes of a lexical hierarchy, inferring that a person breathing is plausible while a dentist breathing is not, for example. We find this inconsistency persists even when models are softly injected with lexical knowledge, and we present a simple post-hoc method of forcing model consistency that improves correlation with human plausibility judgements.
Lexical semantics theories differ in advocating that the meaning of words is represented as an inference graph, a feature mapping or a vector space, thus raising the question: is it the case that one of these approaches is superior to the others in representing lexical semantics appropriately? Or in its non antagonistic counterpart: could there be a unified account of lexical semantics where these approaches seamlessly emerge as (partial) renderings of (different) aspects of a core semantic knowledge base? In this paper, we contribute to these research questions with a number of experiments that systematically probe different lexical semantics theories for their levels of cognitive plausibility and of technological usefulness. The empirical findings obtained from these experiments advance our insight on lexical semantics as the feature-based approach emerges as superior to the other ones, and arguably also move us closer to finding answers to the research questions above.
We describe a parser of English effectuated by biologically plausible neurons and synapses, and implemented through the Assembly Calculus, a recently proposed computational framework for cognitive function. We demonstrate that this device is capable of correctly parsing reasonably nontrivial sentences. While our experiments entail rather simple sentences in English, our results suggest that the parser can be extended beyond what we have implemented, to several directions encompassing much of language. For example, we present a simple Russian version of the parser, and discuss how to handle recursion, embedding, and polysemy.
Recent advances in pre-trained language models have significantly improved neural response generation. However, existing methods usually view the dialogue context as a linear sequence of tokens and learn to generate the next word through token-level self-attention. Such token-level encoding hinders the exploration of discourse-level coherence among utterances. This paper presents DialogBERT, a novel conversational response generation model that enhances previous PLM-based dialogue models. DialogBERT employs a hierarchical Transformer architecture. To efficiently capture the discourse-level coherence among utterances, we propose two training objectives, including masked utterance regression and distributed utterance order ranking in analogy to the original BERT training. Experiments on three multi-turn conversation datasets show that our approach remarkably outperforms the baselines, such as BART and DialoGPT, in terms of quantitative evaluation. The human evaluation suggests that DialogBERT generates more coherent, informative, and human-like responses than the baselines with significant margins.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا