Do you want to publish a course? Click here

Graphene Overcoats for Ultra-High Storage Density Magnetic Media

88   0   0.0 ( 0 )
 Added by Andrea Ferrari
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hard disk drives (HDDs) are used as secondary storage in a number of digital electronic devices owing to low cost ($<$0.1$/GB at 2016 prices) and large data storage capacity (10TB with a 3.5 inch HDD). Due to the exponentially increasing amount of data, there is a need to increase areal storage densities beyond$sim$1Tb/in$^2$. This requires the thickness of carbon overcoats (COCs) to be$<$2nm. Friction, wear, corrosion, and thermal stability are critical concerns$<$2nm, where most of the protective properties of current COCs are lost. This limits current technology and restricts COC integration with heat assisted magnetic recording technology (HAMR), since this also requires laser irradiation stability. Here we show that graphene-based overcoats can overcome all these limitations. 2-4 layers of graphene enable two-fold reduction in friction and provide better corrosion and wear than state-of-the-art COCs. A single graphene layer is enough to reduce corrosion$sim$2.5 times. We also show that graphene can withstand HAMR conditions. Thus, graphene-based overcoats can enable ultrahigh areal density HDDs$>$10Tb/in$^2$.

rate research

Read More

Holey graphyne (HGY), a novel 2D single-crystalline carbon allotrope, was synthesized most recently by Castro-Stephens coupling reaction. The natural existing uniform periodic holes in the 2D carbon-carbon network demonstrate its tremendous potential application in the area of energy storage. Herein, we conducted density functional theory calculation to predict the hydrogen storage capacity of HGY sheet. Its found the Li-decorated single-layer HGY can serve as a promising candidate for hydrogen storage. Our numerical calculations demonstrate that Li atoms can bind strongly to the HGY sheet without the formation of Li clusters, and each Li atom can anchor four H2 molecules with the average adsorption energy about -0.22 eV/H2. The largest hydrogen storage capacity of the doped HGY sheet can arrive as high as 12.8 wt%, this value largely surpasses the target of the U. S. Department of Energy (9 wt%), showing the Li/HGY complex is an ideal hydrogen storage material at ambient conditions. In addition, we investigate the polarization mechanism of the storage media and and find that the polarization stemed from both the electric field induced by the ionic Li decorated on the HGY and the weak polarized hydrogen molecules dominated the H2 adsorption process.
Manipulation of the magnetization by external energies other than magnetic field, such as spin-polarized current1-4, electric voltage5,6 and circularly polarized light7-11 gives a paradigm shift in magnetic nanodevices. Magnetization control of ferromagnetic materials only by circularly polarized light has received increasing attention both as a fundamental probe of the interactions of light and magnetism but also for future high-density magnetic recording technologies. Here we show that for granular FePt films, designed for ultrahigh-density recording, the optical magnetic switching by circularly polarized light is an accumulative effect from multiple optical pulses. We further show that deterministic switching of high anisotropy materials by the combination of circularly polarized light and modest external magnetic fields, thus revealing a pathway towards technological implementation.
370 - M. Ezzadeen , D. Bosch , B. Giraud 2020
The Von-Neumann bottleneck is a clear limitation for data-intensive applications, bringing in-memory computing (IMC) solutions to the fore. Since large data sets are usually stored in nonvolatile memory (NVM), various solutions have been proposed based on emerging memories, such as OxRAM, that rely mainly on area hungry, one transistor (1T) one OxRAM (1R) bit-cell. To tackle this area issue, while keeping the programming control provided by 1T1R bit-cell, we propose to combine gate-all-around stacked junctionless nanowires (1JL) and OxRAM (1R) technology to create a 3-D memory pillar with ultrahigh density. Nanowire junctionless transistors have been fabricated, characterized, and simulated to define current conditions for the whole pillar. Finally, based on Simulation Program with Integrated Circuit Emphasis (SPICE) simulations, we demonstrated successfully scouting logic operations up to three-pillar layers, with one operand per layer.
Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological sensitivities. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique for the components that make up quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of $5 pm 0.5 times 10^{-10}$ mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.
Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [Science 363, 151-155 (2019)] phenine nanotube (PNT) for water desalination applications. Using both equilibrium and non-equilibrium molecular dynamics simulations, we show that the PNT membrane completely rejects salts, but permeates water at a rate which is an order-of-magnitude higher than that of all the membranes used for water filtration. We provide the microscopic mechanisms of salt rejection and fast water-transport by calculating the free-energy landscapes and electrostatic potential profiles. A collective diffusion model accurately predicts the water permeability obtained from the simulations over a wide range of pressure gradients. We propose a method to calculate the osmotic pressure ($Pi$) from the simulation data and find that $Pi$ across the membrane is very low (~1-2 MPa), which thus makes it a suitable nanomaterial for energy-efficient reverse osmosis. These remarkable properties of PNT can be applied in various nanofluidic applications, such as ion-selective channels, ionic transistors, sensing, molecular sieving, and blue energy harvesting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا