Do you want to publish a course? Click here

Higher order variational time discretization of optimal control problems

269   0   0.0 ( 0 )
 Added by Oliver Junge
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We reconsider the variational integration of optimal control problems for mechanical systems based on a direct discretization of the Lagrange-dAlembert principle. This approach yields discrete dynamical constraints which by construction preserve important structural properties of the system, like the evolution of the momentum maps or the energy behavior. Here, we employ higher order quadrature rules based on polynomial collocation. The resulting variational time discretization decreases the overall computational effort.



rate research

Read More

We consider the development of implicit-explicit time integration schemes for optimal control problems governed by the Goldstein-Taylor model. In the diffusive scaling this model is a hyperbolic approximation to the heat equation. We investigate the relation of time integration schemes and the formal Chapman-Enskog type limiting procedure. For the class of stiffly accurate implicit-explicit Runge-Kutta methods (IMEX) the discrete optimality system also provides a stable numerical method for optimal control problems governed by the heat equation. Numerical examples illustrate the expected behavior.
We consider the integral definition of the fractional Laplacian and analyze a linear-quadratic optimal control problem for the so-called fractional heat equation; control constraints are also considered. We derive existence and uniqueness results, first order optimality conditions, and regularity estimates for the optimal variables. To discretize the state equation equation we propose a fully discrete scheme that relies on an implicit finite difference discretization in time combined with a piecewise linear finite element discretization in space. We derive stability results and a novel $L^2(0,T;L^2(Omega))$ a priori error estimate. On the basis of the aforementioned solution technique, we propose a fully discrete scheme for our optimal control problem that discretizes the control variable with piecewise constant functions and derive a priori error estimates for it. We illustrate the theory with one- and two-dimensional numerical experiments.
We study a multiscale approach for the control of agent-based, two-population models. The control variable acts over one population of leaders, which influence the population of followers via the coupling generated by their interaction. We cast a quadratic optimal control problem for the large-scale microscale model, which is approximated via a Boltzmann approach. By sampling solutions of the optimal control problem associated to binary two-population dynamics, we generate sub-optimal control laws for the kinetic limit of the multi-population model. We present numerical experiments related to opinion dynamics assessing the performance of the proposed control design.
199 - Xin Chen , Jorge I. Poveda , Na Li 2021
In power distribution systems, the growing penetration of renewable energy resources brings new challenges to maintaining voltage safety, which is further complicated by the limited model information of distribution systems. To address these challenges, we develop a model-free optimal voltage control algorithm based on projected primal-dual gradient dynamics and continuous-time zeroth-order method (extreme seeking control). This proposed algorithm i) operates purely based on voltage measurements and does not require any other model information, ii) can drive the voltage magnitudes back to the acceptable range, iii) satisfies the power capacity constraints all the time, iv) minimizes the total operating cost, and v) is implemented in a decentralized fashion where the privacy of controllable devices is preserved and plug-and-play operation is enabled. We prove that the proposed algorithm is semi-globally practically asymptotically stable and is structurally robust to measurement noises. Lastly, the performance of the proposed algorithm is further demonstrated via numerical simulations.
We use the continuation and bifurcation package pde2path to numerically analyze infinite time horizon optimal control problems for parabolic systems of PDEs. The basic idea is a two step approach to the canonical systems, derived from Pontryagins maximum principle. First we find branches of steady or time-periodic states of the canonical systems, i.e., canonical steady states (CSS) respectively canonical periodic states (CPS), and then use these results to compute time-dependent canonical paths connecting to a CSS or a CPS with the so called saddle point property. This is a (high dimensional) boundary value problem in time, which we solve by a continuation algorithm in the initial states. We first explain the algorithms and then the implementation via some example problems and associated pde2path demo directories. The first two examples deal with the optimal management of a distributed shallow lake, and of a vegetation system, both with (spatially, and temporally) distributed controls. These examples show interesting bifurcations of so called patterned CSS, including patterned optimal steady states. As a third example we discuss optimal boundary control of a fishing problem with boundary catch. For the case of CPS-targets we first focus on an ODE toy model to explain and validate the method, and then discuss an optimal pollution mitigation PDE model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا