Do you want to publish a course? Click here

Efficient variational approach to dynamics of a spatially extended bosonic Kondo model

209   0   0.0 ( 0 )
 Added by Yuto Ashida
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We develop an efficient variational approach to studying dynamics of a localized quantum spin coupled to a bath of mobile spinful bosons. We use parity symmetry to decouple the impurity spin from the environment via a canonical transformation and reduce the problem to a model of the interacting bosonic bath. We describe coherent time evolution of the latter using bosonic Gaussian states as a variational ansatz. We provide full analytical expressions for equations describing variational time evolution that can be applied to study in- and out-of-equilibrium phenomena in a wide class of quantum impurity problems. In the accompanying paper [Y. Ashida {it et al.}, Phys. Rev. Lett. 123, 183001 (2019)], we present a concrete application of this general formalism to the analysis of the Rydberg Central Spin Model, in which the spin-1/2 Rydberg impurity undergoes spin-changing collisions in a dense cloud of two-component ultracold bosons. To illustrate new features arising from orbital motion of the bath atoms, we compare our results to the Monte Carlo study of the model with spatially localized bosons in the bath, in which random positions of the atoms give rise to random couplings of the standard central spin model.



rate research

Read More

The nonequilibrium variational-cluster approach is applied to study the real-time dynamics of the double occupancy in the one-dimensional Fermi-Hubbard model after different fast changes of hopping parameters. A simple reference system, consisting of isolated Hubbard dimers, is used to discuss different aspects of the numerical implementation of the approach in the general framework of nonequilibrium self-energy functional theory. Opposed to a direct solution of the Euler equation, its time derivative is found to serve as numerically tractable and stable conditional equation to fix the time-dependent variational parameters.
A paradigm model of modern atom optics is studied, strongly interacting ultracold bosons in an optical lattice. This many-body system can be artificially opened in a controlled manner by modern experimental techniques. We present results based on a non-hermitian effective Hamiltonian whose quantum spectrum is analyzed. The direct access to the spectrum of the metastable many-body system allows us to easily identify relatively stable quantum states, corresponding to previously predicted solitonic many-body structures.
We explore the phase diagram of two-component bosons with Feshbach resonant pairing interactions in an optical lattice. It has been shown in previous work to exhibit a rich variety of phases and phase transitions, including a paradigmatic Ising quantum phase transition within the second Mott lobe. We discuss the evolution of the phase diagram with system parameters and relate this to the predictions of Landau theory. We extend our exact diagonalization studies of the one-dimensional bosonic Hamiltonian and confirm additional Ising critical exponents for the longitudinal and transverse magnetic susceptibilities within the second Mott lobe. The numerical results for the ground state energy and transverse magnetization are in good agreement with exact solutions of the Ising model in the thermodynamic limit. We also provide details of the low-energy spectrum, as well as density fluctuations and superfluid fractions in the grand canonical ensemble.
We study two identical fermions, or two hard-core bosons, in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. We show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. This illustrates that, depending on the strength of the phonon-mediated interactions, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles.
In the previous paper, we found a series expression for the average electric current following a quench in the nonequilibrium Kondo model driven by a bias voltage. Here, we evaluate the steady state current in the regimes of strong and weak coupling. We obtain the standard leading order results in the usual weak antiferromagnetic regime, and we also find a new universal regime of strong ferromagnetic coupling with Kondo temperature $T_K = D e^{frac{3pi^2}{8} rho J}$. In this regime, the differential conductance $dI/dV$ reaches the unitarity limit $2e^2/h$ asymptotically at large voltage or temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا