Do you want to publish a course? Click here

New cloud morphologies discovered on the Venuss night during Akatsuki

138   0   0.0 ( 0 )
 Added by Javier Peralta
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

During the years 2016 to 2018, the instruments Akatsuki/IR2 (JAXA) and IRTF/SpeX (NASA) acquired a large set of images at 1.74, 2.26 and 2.32 {mu}m to study the nightside mid-to-lower clouds (48-60 km) of Venus. Here we summarize the rich variety of cloud morphologies apparent in these images: from frequent wave packets and billows caused by shear instabilities, to features reported decades ago like the circum-equatorial belts, bright blotches and equatorial troughs, and previously unseen features like dark spots, sharp dark streaks at mid latitudes and fully-developed vortices.



rate research

Read More

The Venusian atmosphere is covered by clouds with super-rotating winds whose accelerating mechanism is still not well understood. The fastest winds, occurring at the cloud tops ($sim$70 km height), have been studied for decades thanks to their visual contrast in dayside ultraviolet images. The middle clouds ($sim$50-55 km) can be observed at near-infrared wavelengths (800-950 nm), although with very low contrast. Here we present the first extensive analysis of their morphology and motions at lower latitudes along 2016 with 900-nm images from the IR1 camera onboard Akatsuki. The middle clouds exhibit hemispherical asymmetries every 4-5 days, sharp discontinuities in elongated hook-like stripes, and large contrasts (3-21%) probably associated with large changes in the optical thickness. Zonal winds obtained with IR1 images and with ground-based observations reveal mean zonal winds peaking at the equator, while their combination with Venus Express unveils long-term variations of 20 m s$^{-1}$ along 10 years.
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planets rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the lower atmosphere and the surface on the planets nightside escapes to space at narrow spectral windows of the near-infrared. The radiation can be used to estimate winds by tracking the silhouettes of clouds in the lower and middle cloud regions below about 57 km in altitude. Estimates of wind speeds have ranged from 50 to 70 m/s at low to mid-latitudes, either nearly constant across latitudes or with winds peaking at mid-latitudes. Here we report the detection of winds at low latitude exceeding 80 m/s using IR2 camera images from the Akatsuki orbiter taken during July and August 2016. The angular speed around the planetary rotation axis peaks near the equator, which we suggest is consistent with an equatorial jet, a feature that has not been observed previously in the Venusian atmosphere. The mechanism producing the jet remains unclear. Our observations reveal variability in the zonal flow in the lower and middle cloud region that may provide clues to the dynamics of Venuss atmospheric superrotation.
At the cloud top level of Venus (65-70 km altitude) the atmosphere rotates 60 times faster than the underlying surface, a phenomenon known as superrotation. Whereas on Venuss dayside the cloud top motions are well determined and Venus general circulation models predict a mean zonal flow at the upper clouds similar on both day and nightside, the nightside circulation remains poorly studied except for the polar region. Here we report global measurements of the nightside circulation at the upper cloud level. We tracked individual features in thermal emission images at 3.8 and 5.0 $mathrm{mu m}$ obtained between 2006 and 2008 by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M) onboard Venus Express and in 2015 by ground-based measurements with the Medium-Resolution 0.8-5.5 Micron Spectrograph and Imager (SpeX) at the National Aeronautics and Space Administration Infrared Telescope Facility (NASA/IRTF). The zonal motions range from -110 to -60 m s$^{-1}$, consistent with those found for the dayside but with larger dispersion. Slow motions (-50 to -20 m s$^{-1}$) were also found and remain unexplained. In addition, abundant stationary wave patterns with zonal speeds from -10 to +10 m s$^{-1}$ dominate the night upper clouds and concentrate over the regions of higher surface elevation.
We present measurements of the wind speeds at the nightside lower clouds of Venus from observations by JAXAs mission Akatsuki during 2016, complemented with new wind measurements from ground-based observations acquired with TNG/NICS in 2012 and IRTF/SpeX in 2015 and 2017. Zonal and meridional components of the winds were measured from cloud tracking on a total of 466 Akatsuki images of Venus acquired by the camera IR2 using the 2.26-$mathrm{mu m}$ filter, with spatial resolutions ranging 10--80 km per pixel and covering from 2016 March 22 to October 31. More than 149,000 wind vectors were obtained with an automatic technique of template matching, and 2,947 wind vectors were inferred with the manual procedure. The meridional profiles for both components of the winds are found to be consistent with results from the Venus Express mission during 2006--2008, although stronger wind variability is found for the zonal component at equatorial latitudes where Akatsuki observations have better viewing geometry than Venus Express. The zonal winds at low latitudes also suggest a zonal variability that could be associated with solar tides or vertically propagating orographic waves. Finally, the combination of our wind measurements from TNG/NICS, IRTF/SpeX and Akatsuki images with previously published and based in data from 1978 to 2017 suggests variations of up to 30 m s$^{-1}$ in the winds at the lower clouds of the Venus nightside.
268 - M. Scherf , H. Lammer 2021
It is not yet entirely clear whether Mars began as a warm and wet planet that evolved towards the present-day cold and dry body or if it always was cold and dry with just some sporadic episodes of liquid water on its surface. An important clue into this question can be gained by studying the earliest evolution of the Martian atmosphere and whether it was dense and stable to maintain a warm and wet climate or tenuous and susceptible to strong atmospheric escape. We discuss relevant aspects for the evolution and stability of a potential early Martian atmosphere. This contains the solar EUV flux evolution, the formation timescale and volatile inventory of the planet including volcanic degassing, impact delivery and removal, the loss of a catastrophically outgassed steam atmosphere, atmosphere-surface interactions, and thermal and non-thermal escape processes affecting any secondary atmosphere. While early non-thermal escape at Mars before 4 billion years ago (Ga) is poorly understood, particularly in view of its ancient intrinsic magnetic field, research on thermal escape processes indicate that volatile delivery and volcanic degassing cannot counterbalance the strong thermal escape. Therefore, a catastrophically outgassed steam atmosphere of several bars of CO2 and H2O, or CO and H2 for reduced conditions, could have been lost within just a few million years (Myr). Thereafter, Mars likely could not build up a dense secondary atmosphere during its first ~400 Myr but might only have possessed an atmosphere sporadically during events of strong volcanic degassing, potentially also including SO2. This indicates that before ~4.1 Ga Mars indeed might have been cold and dry. A denser CO2- or CO-dominated atmosphere, however, might have built up afterwards but must have been lost later-on due to non-thermal escape processes and sequestration into the ground.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا