Do you want to publish a course? Click here

Did Mars possess a dense atmosphere during the first ~400 million years?

269   0   0.0 ( 0 )
 Added by Manuel Scherf
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is not yet entirely clear whether Mars began as a warm and wet planet that evolved towards the present-day cold and dry body or if it always was cold and dry with just some sporadic episodes of liquid water on its surface. An important clue into this question can be gained by studying the earliest evolution of the Martian atmosphere and whether it was dense and stable to maintain a warm and wet climate or tenuous and susceptible to strong atmospheric escape. We discuss relevant aspects for the evolution and stability of a potential early Martian atmosphere. This contains the solar EUV flux evolution, the formation timescale and volatile inventory of the planet including volcanic degassing, impact delivery and removal, the loss of a catastrophically outgassed steam atmosphere, atmosphere-surface interactions, and thermal and non-thermal escape processes affecting any secondary atmosphere. While early non-thermal escape at Mars before 4 billion years ago (Ga) is poorly understood, particularly in view of its ancient intrinsic magnetic field, research on thermal escape processes indicate that volatile delivery and volcanic degassing cannot counterbalance the strong thermal escape. Therefore, a catastrophically outgassed steam atmosphere of several bars of CO2 and H2O, or CO and H2 for reduced conditions, could have been lost within just a few million years (Myr). Thereafter, Mars likely could not build up a dense secondary atmosphere during its first ~400 Myr but might only have possessed an atmosphere sporadically during events of strong volcanic degassing, potentially also including SO2. This indicates that before ~4.1 Ga Mars indeed might have been cold and dry. A denser CO2- or CO-dominated atmosphere, however, might have built up afterwards but must have been lost later-on due to non-thermal escape processes and sequestration into the ground.



rate research

Read More

Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 {mu}m effective radius during northern summer and a 2 {mu}m effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136{deg} period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS=50 and 115{deg}. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.
112 - G. Gilli , F. Forget , A. Spiga 2020
The impact of gravity waves (GW) on diurnal tides and the global circulation in the middle/upper atmosphere of Mars is investigated using a General Circulation Model (GCM). We have implemented a stochastic parameterization of non-orographic GW into the Laboratoire de Meteorologie Dynamique (LMD) Mars GCM (LMD-MGCM) following an innovative approach. The source is assumed to be located above typical convective cells ($sim$ 250 Pa) and the effect of GW on the circulation and predicted thermal structure above 1 Pa ($sim$ 50 km) is analyzed. We focus on the comparison between model simulations and observations by the Mars Climate Sounder (MCS) on board Mars Reconnaissance Orbiter during Martian Year 29. MCS data provide the only systematic measurements of the Martian mesosphere up to 80 km to date. The primary effect of GW is to damp the thermal tides by reducing the diurnal oscillation of the meridional and zonal winds. The GW drag reaches magnitudes of the order of 1 m/s/sol above 10$^{-2}$ Pa in the northern hemisphere winter solstice and produces major changes in the zonal wind field (from tens to hundreds of m/s), while the impact on the temperature field is relatively moderate (10-20K). It suggests that GW induced alteration of the meridional flow is the main responsible for the simulated temperature variation. The results also show that with the GW scheme included, the maximum day-night temperature difference due to the diurnal tide is around 10K, and the peak of the tide is shifted toward lower altitudes, in better agreement with MCS observations.
The Mars Express (MEX) mission has been successfully operated around Mars since 2004. Among many results, MEX has provided some of the most accurate astrometric data of the two Mars moons, Phobos and Deimos. In this work we present new ephemerides of Mars moons benefitting from all previously published astrometric data to the most recent MEX SRC data. All in all, observations from 1877 until 2018 and including spacecraft measurements from Mariner 9 to MEX were included. Assuming a homogeneous interior, we fitted Phobos forced libration amplitude simultaneously with the Martian tidal k2/Q ratio and the initial state of the moons. Our solution of the physical libration 1.09 +/- 0.01 degrees deviates notably from the homogeneous solution. But considering the very low error bar, this may essentially suggest the necessity to consider higher order harmonics, with an improved rotation model, in the future. While most data could be successfully fitted, we found a disagreement between the Mars Reconnaissance Orbiter and the Mars Express astrometric data at the kilometer level probably associated with a biased phase correction. The present solution precision is expected at the level of a few hundreds of meters for Phobos and several hundreds of meters for Deimos for the coming years. The real accuracy of our new ephemerides will have to be confirmed by confrontation with independent observational means.
149 - Tao Ruan 2019
A Martian semiannual oscillation (SAO), similar to that in the Earths tropical stratosphere, is evident in the Mars Analysis Correction Data Assimilation reanalysis dataset (MACDA) version 1.0, not only in the tropics, but also extending to higher latitudes. Unlike on Earth, the Martian SAO is found not always to reverse its zonal wind direction, but only manifests itself as a deceleration of the dominant wind at certain pressure levels and latitudes. Singular System Analysis (SSA) is further applied on the zonal-mean zonal wind in different latitude bands to reveal the characteristics of SAO phenomena at different latitudes. The second pair of principal components (PCs) is usually dominated by a SAO signal, though the SAO signal can be strong enough to manifest itself also in the first pair of PCs. An analysis of terms in the Transformed Eulerian Mean equation (TEM) is applied in the tropics to further elucidate the forcing processes driving the tendency of the zonal-mean zonal wind. The zonal-mean meridional advection is found to correlate strongly with the observed oscillations of zonal-mean zonal wind, and supplies the majority of the westward (retrograde) forcing in the SAO cycle. The forcing due to various non-zonal waves supplies forcing to the zonal-mean zonal wind that is nearly the opposite of the forcing due to meridional advection above ~3 Pa altitude, but it also partly supports the SAO between 40 Pa and 3 Pa. Some distinctive features occurring during the period of the Mars year (MY) 25 global-scale dust storm (GDS) are also notable in our diagnostic results with substantially stronger values of eastward and westward momentum in the second half of MY 25 and stronger forcing due to vertical advection, transient waves and thermal tides.
The Transiting Exoplanet Survey Satellite (TESS) is the first high-precision full-sky photometry survey in space. We present light curves from a magnitude limited set of stars and other stationary luminous objects from the TESS Full Frame Images, as reduced by the MIT Quick Look Pipeline (QLP). Our light curves cover the full two-year TESS Primary Mission and include $sim$ 14,770,000 and $sim$ 9,600,000 individual light curve segments in the Southern and Northern ecliptic hemispheres, respectively. We describe the photometry and detrending techniques we used to create the light curves, and compare the noise properties with theoretical expectations. All of the QLP light curves are available at MAST as a High Level Science Product via doi.org/10.17909/t9-r086-e880 (https://archive.stsci.edu/hlsp/qlp). This is the largest collection of TESS photometry available to the public to date.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا