No Arabic abstract
At the cloud top level of Venus (65-70 km altitude) the atmosphere rotates 60 times faster than the underlying surface, a phenomenon known as superrotation. Whereas on Venuss dayside the cloud top motions are well determined and Venus general circulation models predict a mean zonal flow at the upper clouds similar on both day and nightside, the nightside circulation remains poorly studied except for the polar region. Here we report global measurements of the nightside circulation at the upper cloud level. We tracked individual features in thermal emission images at 3.8 and 5.0 $mathrm{mu m}$ obtained between 2006 and 2008 by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M) onboard Venus Express and in 2015 by ground-based measurements with the Medium-Resolution 0.8-5.5 Micron Spectrograph and Imager (SpeX) at the National Aeronautics and Space Administration Infrared Telescope Facility (NASA/IRTF). The zonal motions range from -110 to -60 m s$^{-1}$, consistent with those found for the dayside but with larger dispersion. Slow motions (-50 to -20 m s$^{-1}$) were also found and remain unexplained. In addition, abundant stationary wave patterns with zonal speeds from -10 to +10 m s$^{-1}$ dominate the night upper clouds and concentrate over the regions of higher surface elevation.
Planetary-scale waves are thought to play a role in powering the yet-unexplained atmospheric superrotation of Venus. Puzzlingly, while Kelvin, Rossby and stationary waves manifest at the upper clouds (65--70 km), no planetary-scale waves or stationary patterns have been reported in the intervening level of the lower clouds (48--55 km), although the latter are probably Lee waves. Using observations by the Akatsuki orbiter and ground-based telescopes, we show that the lower clouds follow a regular cycle punctuated between 30$^{circ}$N--40$^{circ}$S by a sharp discontinuity or disruption with potential implications to Venuss general circulation and thermal structure. This disruption exhibits a westward rotation period of $sim$4.9 days faster than winds at this level ($sim$6-day period), alters clouds properties and aerosols, and remains coherent during weeks. Past observations reveal its recurrent nature since at least 1983, and numerical simulations show that a nonlinear Kelvin wave reproduces many of its properties.
One of the most intriguing, long-standing questions regarding Venus atmosphere is the origin and distribution of the unknown UV-absorber, responsible for the absorption band detected at the near-UV and blue range of Venus spectrum. In this work, we use data collected by MASCS spectrograph on board the MESSENGER mission during its second Venus flyby in June 2007 to address this issue. Spectra range from 0.3 {mu}m to 1.5 {mu}m including some gaseous H2O and CO2 bands, as well as part of the SO2 absorption band and the core of the UV absorption. We used the NEMESIS radiative transfer code and retrieval suite to investigate the vertical distribution of particles in the Equatorial atmosphere and to retrieve the imaginary refractive indices of the UV-absorber, assumed to be well mixed with Venus small mode-1 particles. The results show an homogeneous Equatorial atmosphere, with cloud tops (height for unity optical depth) at 75+/-2 km above surface. The UV absorption is found to be centered at 0.34+/-0.03 {mu}m with a full width half maximum of 0.14+/-0.01 {mu}m. Our values are compared with previous candidates for the UV aerosol absorber, among which disulfur oxide (S2O) and dioxide disulfur (S2O2) provide the best agreement with our results.
We present measurements of the wind speeds at the nightside lower clouds of Venus from observations by JAXAs mission Akatsuki during 2016, complemented with new wind measurements from ground-based observations acquired with TNG/NICS in 2012 and IRTF/SpeX in 2015 and 2017. Zonal and meridional components of the winds were measured from cloud tracking on a total of 466 Akatsuki images of Venus acquired by the camera IR2 using the 2.26-$mathrm{mu m}$ filter, with spatial resolutions ranging 10--80 km per pixel and covering from 2016 March 22 to October 31. More than 149,000 wind vectors were obtained with an automatic technique of template matching, and 2,947 wind vectors were inferred with the manual procedure. The meridional profiles for both components of the winds are found to be consistent with results from the Venus Express mission during 2006--2008, although stronger wind variability is found for the zonal component at equatorial latitudes where Akatsuki observations have better viewing geometry than Venus Express. The zonal winds at low latitudes also suggest a zonal variability that could be associated with solar tides or vertically propagating orographic waves. Finally, the combination of our wind measurements from TNG/NICS, IRTF/SpeX and Akatsuki images with previously published and based in data from 1978 to 2017 suggests variations of up to 30 m s$^{-1}$ in the winds at the lower clouds of the Venus nightside.
We present the detection and characterisation of mesoscale waves on the lower clouds of Venus using images from the Visible Infrared Thermal Imaging Spectrometer onboard the European Venus Express space mission and from the 2 $mu$m camera (IR2) instrument onboard the Japanese space mission Akatsuki. We used image navigation and processing techniques based on contrast enhancement and geometrical projections to characterise morphological properties of the detected waves, such as horizontal wavelength and the relative optical thickness drop between crests and troughs. Additionally, we performed phase velocity and trajectory tracking of wave packets. We combined these observations to derive other properties of the waves such as the vertical wavelength of detected packets. Our observations include 13 months of data from August 2007 to October 2008, and the entire available data set of IR2 from January to November 2016.We characterised almost 300 wave packets across more than 5500 images over a broad region of the globe of Venus. Our results show a wide range of properties and are not only consistent with previous observations but also expand upon them, taking advantage of two instruments that target the same cloud layer of Venus across multiple periods. In general, waves observed on the nightside lower cloud are of a larger scale than the gravity waves reported in the upper cloud. This paper is intended to provide a more in-depth view of atmospheric gravity waves on the lower cloud and enable follow-up works on their influence in the general circulation of Venus.
We first respond to two points raised by Villanueva et al. We show the JCMT discovery spectrum of PH3 can not be re-attributed to SO2, as the line width is larger than observed for SO2 features, and the required abundance would be an extreme outlier. The JCMT spectrum is also consistent with our simple model, constant PH3-abundance with altitude, with no discrepancy in line profile (within data limits); reconciliation with a full photochemical model is the subject of future work. Section 2 presents initial results from re-processed ALMA data. Villanueva et al. noted an issue with bandpass calibration. They have worked on a partially re-processed subset of the ALMA data, so we note where their conclusions, and those of Greaves et al., are now superseded. To summarise: we recover PH3 in Venus atmosphere with ALMA (~5{sigma} confidence). Localised abundance appears to peak at ~5-10 parts-per-billion (ppb), with suggestions of spatial variation. Advanced data-products suggest a planet-averaged PH3 abundance ~1-4 ppb, lower than from the earlier ALMA processing (which indicated 7+ ppb). The ALMA data are reconcilable with the JCMT detection (~20 ppb) if there is order-of-magnitude temporal variation; more advanced processing of the JCMT data is underway to check methods. Independent PH3 measurements suggest possible altitude dependence (under ~5 ppb at 60+ km, up to ~100 ppb at 50+ km; see Section 2: Conclusions.). Given that both ALMA and JCMT were working at the limit of observatory capabilities, new spectra should be obtained. The ALMA data in-hand are no longer limited by calibration, but spectral ripples still exist, probably due to size and brightness of Venus in relation to the primary beam. Further, spatial ripples are present, potentially reducing significance of real narrow spectral features.