Do you want to publish a course? Click here

Delay Violation Probability and Age of Information Interplay in the Two-user Multiple Access Channel

86   0   0.0 ( 0 )
 Added by Nikolaos Pappas
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

In this paper, we study the interplay between delay violation probability and average Age of Information (AoI) in a two-user wireless multiple access channel with multipacket reception (MPR) capability. We consider a system in which users have heterogeneous traffic characteristics: one has stringent delay constraints, while the other measures a source and transmits status updates in order to keep the AoI low. We show the effect of sensor sampling rate on the delay violation probability and that of the service rate of the delay-sensitive user on information freshness.



rate research

Read More

Age of Information (AoI) is a newly appeared concept and metric to characterize the freshness of data. In this work, we study the delay and AoI in a multiple access channel (MAC) with two source nodes transmitting different types of data to a common destination. The first node is grid-connected and its data packets arrive in a bursty manner, and at each time slot it transmits one packet with some probability. Another energy harvesting (EH) sensor node generates a new status update with a certain probability whenever it is charged. We derive the delay of the grid-connected node and the AoI of the EH sensor as functions of different parameters in the system. The results show that the mutual interference has a non-trivial impact on the delay and age performance of the two nodes.
Timeliness is an emerging requirement for many Internet of Things (IoT) applications. In IoT networks, where a large-number of nodes are distributed, severe interference may incur during the transmission phase which causes age of information (AoI) degradation. It is therefore important to study the performance limit of AoI as well as how to achieve such limit. In this paper, we aim to optimize the AoI in random access Poisson networks. By taking into account the spatio-temporal interactions amongst the transmitters, an expression of the peak AoI is derived, based on explicit expressions of the optimal peak AoI and the corresponding optimal system parameters including the packet arrival rate and the channel access probability are further derived. It is shown that with a given packet arrival rate (resp. a given channel access probability), the optimal channel access probability (resp. the optimal packet arrival rate), is equal to one under a small node deployment density, and decrease monotonically as the spatial deployment density increases due to the severe interference caused by spatio-temproal coupling between transmitters. When joint tuning of the packet arrival rate and channel access probability is performed, the optimal channel access probability is always set to be one. Moreover, with the sole tuning of the channel access probability, it is found that the optimal peak AoI performance can be improved with a smaller packet arrival rate only when the node deployment density is high, which is contrast to the case of the sole tuning of the packet arrival rate, where a higher channel access probability always leads to better optimal peak AoI regardless of the node deployment density. In all the cases of optimal tuning of system parameters, the optimal peak AoI linearly grows with the node deployment density as opposed to an exponential growth with fixed system parameters.
In this work, we combine the two notions of timely delivery of information in order to study their interplay; namely, deadline-constrained packet delivery due to latency constraints and freshness of information at the destination. More specifically, we consider a two-user multiple access setup with random access, in which user 1 is a wireless device with a queue and has external bursty traffic which is deadline-constrained, while user 2 monitors a sensor and transmits status updates to the destination. For this simple, yet meaningful setup, we provide analytical expressions for the throughput and drop probability of user 1, and an analytical expression for the average Age of Information (AoI) of user 2 monitoring the sensor. The relations reveal that there is a trade-off between the average AoI of user 2 and the drop rate of user 1: the lower the average AoI, the higher the drop rate, and vice versa. Simulations corroborate the validity of our theoretical results.
This paper investigates the information freshness of two-way relay networks (TWRN) operated with physical-layer network coding (PNC). Information freshness is quantified by age of information (AoI), defined as the time elapsed since the generation time of the latest received information update. PNC reduces communication latency of TWRNs by turning superimposed electromagnetic waves into network-coded messages so that end users can send update packets to each other via the relay more frequently. Although sending update packets more frequently is potential to reduce AoI, how to deal with packet corruption has not been well investigated. Specifically, if old packets are corrupted in any hop of a TWRN, one needs to decide the old packets to be dropped or to be retransmitted, e.g., new packets have recent information, but may require more time to be delivered. We study the average AoI with and without ARQ in PNC-enabled TWRNs. We first consider a non-ARQ scheme where old packets are always dropped when corrupted, referred to once-lost-then-drop (OLTD), and a classical ARQ scheme with no packet lost, referred to as reliable packet transmission (RPT). Interestingly, our analysis shows that neither the non-ARQ scheme nor the pure ARQ scheme achieves good average AoI. We then put forth an uplink-lost-then-drop (ULTD) protocol that combines packet drop and ARQ. Experiments on software-defined radio indicate that ULTD significantly outperforms OLTD and RPT in terms of average AoI. Although this paper focuses on TWRNs, we believe the insight of ULTD applies generally to other two-hop networks. Our insight is that to achieve high information freshness, when packets are corrupted in the first hop, new packets should be generated and sent (i.e., old packets are discarded); when packets are corrupted in the second hop, old packets should be retransmitted until successful reception.
We summarize recent contributions in the broad area of age of information (AoI). In particular, we describe the current state of the art in the design and optimization of low-latency cyberphysical systems and applications in which sources send time-stamped status updates to interested recipients. These applications desire status updates at the recipients to be as timely as possible; however, this is typically constrained by limited system resources. We describe AoI timeliness metrics and present general methods of AoI evaluation analysis that are applicable to a wide variety of sources and systems. Starting from elementary single-server queues, we apply these AoI methods to a range of increasingly complex systems, including energy harvesting sensors transmitting over noisy channels, parallel server systems, queueing networks, and various single-hop and multi-hop wireless networks. We also explore how update age is related to MMSE methods of sampling, estimation and control of stochastic processes. The paper concludes with a review of efforts to employ age optimization in cyberphysical applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا